
EE141

EECS151/251A
Spring	2023	
Digital	Design	and	
Integrated	Circuits
Instructor:		
John	Wawrzynek

Lecture 26:
Wrap-up

EE141

Announcements
❑ Homework assignment 10 posted - due next Monday.
❑ HW 11 - final problem set - posted end of this week.
❑ Final project checkoffs will be Thursday of next week

(RRR).
❑ Final reports will be due Monday at midnight of exam

week.
❑ Apple has generously offered to offer prizes for the

best projects this semester:
❑ The top ASIC project (2 students), & the top 3 FPGA

projects (6 students)
❑ The student can choose either an Apple Watch (SE

GPS, 40mm) or Airpod Pro.

2

EE141

Outline
❑ Important takeaways
❑ Exam Topics

3

EE141
4

Why Study and Learn Digital Design?
❑ We expect that many of you will eventually be employed

as designers.
▪ Digital design is not a spectator sport. The only way to learn

it, and to appreciate the issues, is to do it.
▪ To a large extent, it comes with practice/experience (this course is

just the beginning).
▪ Another way to get better is to study other designs. Not time to

do much of this during the semester, but a good practice for later.
❑ However, a significant percentage of our graduates will not

be digital designers. What’s in it for them?
▪ Better manager of designers, marketers, field engineers, etc.
▪ Better researcher/scientist/designer in related areas

– Software engineers, fabrication process development, etc.
▪ Even to become a better user of electronic systems.

EE141
5

In What Context Will You be Designing?

❑ Electronic design is a critical tool for most areas of pure science:
▪ Astrophysics – special electronics used for processing radio antenna

signals.
▪ Genomics – special processing architectures for DNA string matching.
▪ In general - sensor processing, control, and number crunching.
▪ Machine Learning now relies heavily on special hardware.
▪ In some fields, computation has replaced experimentation – particle

physics, world weather prediction (fluid dynamics).
❑ In computer engineering, prototypes often designed, implemented, and

studied to “prove out” an idea. Common within universities and
industrial research labs. Lessons learned and proven ideas often
transferred to industry through licensing, technical communications, or
startup companies.
▪ RISC processors were first proved out at Berkeley and IBM Research

Engineers learn so that they can build.

Scientists build so that they can learn.

EE141
6

Designs in Industry
❑ Of course, companies are the primary employer of

designers. Provide some useful products to society or
government and make a profit for the shareholders.

❑ Interesting recent shift
▪ All software giants now

have hardware design
teams (embedded and
chips)

▪ Google, Amazon,
Facebook,
Microsoft, …

EE141
7

Ten Big Ideas from EECS151
1. Modularity and Hierarchy is an

important way to describe and
think about digital systems.

2. Parallelism is a key property of
hardware systems and
distinguishes them from serial
software execution.

3. Clocking and the use of state
elements (latches, flip-flops, and
memories) control the flow of
data.

4. Cost/Performance/Power
tradeoffs are possible at all
levels of the system design.

5. Boolean Algebra and other logic
representations.

6. Hardware Description Languages
(HDLs) and Logic Synthesis are
a central tool for digital design.

7. Datapath + Controller is a
effective design pattern.

8. Finite State Machines abstraction
gives us a way to model any
digital system – used for designing
controllers.

9. Arithmetic circuits are often
based on “long-hand” arithmetic
techniques.

10.FPGAs + ASICs give us a
convenient and flexible
implementation technology.

EE141
8

What We Didn’t Cover
❑ Design Verification and Testing

▪ Industrial designers spend more than half their time testing and
verifying correctness of their designs.

– Some of this covered in the lab and a bit in lecture. Didn’t cover
rigorous testing procedures.

▪ Most industrial products are designed from the start for testability.
Important for design verification and later for manufacturing test.

▪ Related: Fault modeling and fault tolerant design.

❑ Other High-level Optimization Techniques
▪ High-level Synthesis - now starting to catch on

❑ Other High-level Architectures: GPUs, video processing,
network routers, …

❑ Asynchronous Design

EE141

Most Closely Related Courses
❑ CS152 Computer Architecture and Engineering

▪ Design and Analysis of Microprocessors
▪ Applies basic design concepts from EECS151

❑ EE251B Advanced Digital Integrated Circuits and
Systems
▪ Transistor-level design of ICs
▪ More on Advanced ASIC Tool use

❑ EE 194/290C: The Tapeout Class

9

EE141
10

Future Design Issues
❑ Automatic High-level synthesis (HLS) and optimization (with

micro-architecture synthesis) and hardware/software co-design.
❑ Machine Learning and Digital Design:

▪ Can ML techniques help us design better systems or do it more quickly?
❑ Current practice is “system on a chip” (SOC) design

methodology:
▪ Pre-designed subsystems (processor cores, bus controllers, memory

systems, network interfaces, etc.) connected with standard on-chip
interconnect or bus.

▪ Strong emphasis on “accelerators” for energy efficiency and
performance.

❑ A number of alternatives to silicon VLSI have been proposed,
including techniques based on:
▪ Carbon nanotubes*, molecular electronics, quantum mechanics, and

biological processes.
▪ How will these change the way we design systems?

*In 2012, IBM produced a sub-10 nm carbon nanotube transistor that outperformed silicon on speed and power.[15] "The
superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in
future aggressively scaled transistor technologies", according to the abstract of the paper in Nano Letters.[16]

https://en.wikipedia.org/wiki/Carbon_nanotube_field-effect_transistor
https://en.wikipedia.org/wiki/Nano_Letters

EE141

Final Exam and Project Info
❑ Exam held Wed, May 10 • 11:30A - 2:30P •

Physics Building 4
❑ “Comprehensive” Final Exam
❑ Emphasis on second half, but some

coverage of first half
❑ Same format as Exam 1. Closed-book and

notes, one page of notes.
❑ Project interviews: Thursday of RRR week,

5/4. Signup!
❑ Project final reports due Monday 5/8, midnight.

11

Single-Cycle	RISC-V	RV32I	Datapath

12

IME
M

ALU

Imm.	
Gen

+4
DMEM

Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr
DataW

DataR

1
0

0
1
21

0
p
c 0

1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

pc+4
alu

me
m

wb
al
upc+4

pc

imm[31:
0]

Reg[rs
2]

inst[31:0] ImmSelRegWEnBrUnBrEqBrLT ASelBSel ALUSel MemRW WBSelPCSel

wb
Reg[rs
1]

How to Design a RISC-V Single-Cycle Processor from the ISA

EE141

Pipelined Processor

13

Processor Pipelining Hazards and Mechanisms

Sources of Power and Energy consumption in Digital ICs

Some low-power design techniques

Power-down idle transistors

Parallelism and pipelining

Slow down non-critical paths

Thermal management

Principles Behind 4 Low-power Design Techniques

Gate delay
roughly linear

with Vdd

This magic trick brought to you by Cory Hall ...

3636

Active Power ReductionActive Power Reduction

Slow Fast Slow

L
o

w
 S

u
p

p
ly

V
o

lt
a

g
e

H
ig

h
 S

u
p

p
ly

V
o

lt
a

g
e

Multiple Supply

Voltages

Logic Block
Freq = 1

Vdd = 1

Throughput = 1

Power = 1

Area = 1

Pwr Den = 1

Vdd

Logic Block

Freq = 0.5

Vdd = 0.5

Throughput = 1

Power = 0.25

Area = 2

Pwr Den = 0.125

Vdd/2

Logic Block

Replicated DesignsAnd so, we can transform this:

Block processes stereo audio. 1/2
of clocks for “left”, 1/2 for “right”.

P ~ F ⨯ Vdd
2

P ~ 1 ⨯ 1 2

Into this: Top block processes “left”, bottom “right”.

3636

Active Power ReductionActive Power Reduction

Slow Fast Slow

L
o

w
 S

u
p

p
ly

V
o

lt
a

g
e

H
ig

h
 S

u
p

p
ly

V
o

lt
a

g
e

Multiple Supply

Voltages

Logic Block
Freq = 1

Vdd = 1

Throughput = 1

Power = 1

Area = 1

Pwr Den = 1

Vdd

Logic Block

Freq = 0.5

Vdd = 0.5

Throughput = 1

Power = 0.25

Area = 2

Pwr Den = 0.125

Vdd/2

Logic Block

Replicated Designs

CV2 power only

P ~ #blks ⨯ F ⨯ Vdd 2

P ~ 2 ⨯ 1/2 ⨯ 1/4 = 1/4

How to Improve Energy Efficiency
through Parallelism and Pipelining

EE141

Memory Architecture Overview

17

❑ Word lines used to select a
row for reading or writing

❑ Bit lines carry data to/from
periphery

❑ Core aspect ratio keep
close to 1 to help balance
delay on word line versus
bit line

❑ Address bits are divided
between the two decoders

❑ Row decoder used to
select word line

❑ Column decoder used to
select one or more columns
for input/output of data

Memory Block Internal Architecture

EE141

SRAM read/write operations

18

SRAM Cell and Read/Write Operation

EE141

Periphery

❑ Decoders
❑ Sense Amplifiers
❑ Input/Output Buffers
❑ Control / Timing Circuitry

19

Memory Block Periphery Circuits

EE141

Row Decoder • Expands L-K address lines
into 2L-K word lines

20

❑ Example: decoder for
8Kx8 memory block
❑ core arranged as

256x256 cells
❑ Need 256 AND gates,

each driving one word
line

Memory Decoder Design

EE141

Write: C S is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

1-Transistor DRAM Cell

21

VBL

CS << CBL

VBIT= 0 or (VDD – VT)

❑ To get sufficient Cs, special IC process is used
❑ Cell reading is destructive, therefore read operation always is followed by a

write-back
❑ Cell looses charge (leaks away in ms - highly temperature dependent),

therefore cells occasionally need to be “refreshed” - read/write cycle

DRAM Cell and Read/Write Operation

EE141
22

Dual-ported Memory Internals
❑ Add decoder, another set of

read/write logic, bits lines, word
lines:

deca decb
cell

array

r/w logic

r/w logic

data ports
address

ports

• Example cell: SRAM

• Repeat everything but cross-coupled
inverters.

• This scheme extends up to a couple
more ports, then need to add
additional transistors.

b2 b2b1 b1

WL2

WL1

Dual-port Memory Architecture

EE141

Cascading Memory-Blocks
How to make larger memory blocks out of smaller ones.

Increasing the depth. Example: given 1Kx8, want 2Kx8

23

Cascading Memory blocks for More Width, Depth, and Ports

EE141

FIFO Implementation Details
• Assume, dual-port memory with asynchronous read,

synchronous write.
• Binary counter for each of read and write address.

CEs (count enable) controlled by WE and RE.
• Equal comparator to see when pointers match.
• State elements for FULL and EMPTY flags:

 • Control logic (FSM) with
truth-table (draft) shown to
left.

 WE RE equal* EMPTYi FULLi

 0 0 0 0 0
 0 0 1 EMPTYi-1 FULLi-1
 0 1 0 0 0
 0 1 1 1 0
 1 0 0 0 0
 1 0 1 0 1
 1 1 0 0 0
 1 1 1 EMPTYi-1 FULLi-1

* Actually need 2 signals: “will be
equal after read” and “will be equal
after write”

FIFO Implementation

Fall 2019 EECS151/251A Page

Time-Multiplexing
• Time multiplex single ALU for

all adds and multiplies:
• Attempts to minimize cost at

the expense of time.
– Need to add extra register,

muxes, control.

• If we adopt above approach, we can then consider the combinational
hardware circuit diagram as an abstract computation-graph.

• This time-multiplexing “covers” the computation graph by performing
the action of each node one at a time. (Sort of emulates it.)

Using other primitives, other
coverings are possible.

25

Serialization versus Parallelization in Iterative Computations

Fall 2019 EECS151/251A Page

Limits on Pipelining
• Without FF overhead, throughput improvement α # of stages.
• After many stages are added FF overhead begins to dominate:

• Other limiters to effective pipelining:
– clock skew contributes to clock overhead
– unequal stages
– FFs dominate cost
– clock distribution power consumption
– feedback (dependencies between loop iterations)

FF “overhead”
is the setup and
clk to Q times.

26

Principles of Pipelining and Restrictions of Loops

Fall 2019 EECS151/251A Page

Pipelining Loops with Feedback

However, we can overlap the “non-
feedback” part of the iterations:

Add is associative and communitive.
Therefore we can reorder the
computation to shorten the delay
of the feedback path:

 yi = (yi-1 + xi) + a = (a + xi) + yi-1

 add1 xi+a xi+1+a xi+2+a

 add2 yi yi+1 yi+2

• Pipelining is limited to 2 stages.

“Loop carry dependency”

“Shorten” the
feedback path.

27

Principles of Pipelining and Restrictions of Loops

Fall 2019 EECS151/251A Page

“C-slow” Technique
• Essentially this means we go

ahead and cut feedback path:

• This makes operations in
adjacent pipeline stages
independent and allows full cycle
for each:

• C computations (in this case
C=2) can use the pipeline
simultaneously.

• Must be independent.
• Input MUX interleaves input

streams.
• Each stream runs at half the

pipeline frequency.
• Pipeline achieves full

throughput.

add1 x+b x+b x+b x+b x+b x+b
mult ay ay ay ay ay ay
add2 y y y y y y

28

Multithreaded Processors use this.

C-Slow Technique for Pipelining Loops

EE141

5. Optimization, Architecture #4

❑ Datapath:

❑ Incremental cost:
– Addition of another register & mux, adder mux, and control.

❑ Performance: find max time of the four actions
 1. XßMemory[NUMA], 0.5+1+10+1+0.5 = 13ns
 NUMAßNEXT+1; same for all ⇒ T>13ns, F<77MHz
 2. NEXTßMemory[NEXT],
 SUMßSUM+X;

LD_NUMA

29

List Processor Design and Optimizations

Spring 2019 EECS151 - Lec24 Page

nexti

Modulo Scheduling List Processor

• Finished schedule for 4 iterations:

nexti
NEXTßMemory[NEXT]

numai
NUMAßNEXT+1

xi
XßMemory[NUMA]

sumi
SUMßSUM+X

• Assuming a single adder and a single ported
memory. Minimal schedule section length = 2.
Because both memory and adder are used for 2

cycles during one iteration.

Memory next1 next2 x1 next3 x2 next4 x3
adder numa1 numa2 sum1 numa3 sum2 numa4 sum3

numai

memory

adder

nexti
numai

memory

adder
Xi-1

nexti
numai

memory

adder
Xi-1

sumi-2

wrap-around,
decrease subscript

wrap-around,
decrease subscript

30

Modulo Scheduling

EE141

Carry Select Adder
❑ Extending Carry-select to multiple blocks

❑ What is the optimal # of blocks and # of bits/block?
▪ If blocks too small delay dominated by total mux delay
▪ If blocks too large delay dominated by adder ripple delay

T α sqrt(N),
Cost ≈2*ripple + muxes 31

Carry Select Adder Design

EE141

Parallel Prefix Adder Example

G = g1 + g0 p1
P = p1p0

g1 p1g2 p2g3 p3

G = g2 + g1 p2
P = p2p1

G = g3 + g2 p3
P = p3p2

g0 p0

G = g2 + g1 p2 + g0p2p1

 = c3
G = g3 + g2 p3 +(g1 + g0p1)p3p2

 = g3 + g2p3 + g1p3p2 + g0p3p2p1

 = c4

 c2

 c1

si = ai ⊕ bi ⊕ ci = pi ⊕ ci
32

Carry Lookahead and Parallel Prefix Adders

EE141

Bit-serial Adder

❑ Addition of 2 n-bit numbers:
▪ takes n clock cycles,
▪ uses 1 FF, 1 FA cell, plus registers
▪ the bit streams may come from or go to other circuits, therefore the

registers might not be needed.

• A, B, and R held in shift-registers.
Shift right once per clock cycle.

• Reset is asserted by controller.

33

Bit-Serial Addition

EE141

Combinational Multiplier (unsigned)
 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

Propagation delay ~2N

multiplicand
multiplier

Partial products, one for each bit in
multiplier (each bit needs just one
AND gate)

34

Array Multiplier Design

Page

Carry-Save Addition
• Speeding up multiplication is a

matter of speeding up the
summing of the partial products.

• “Carry-save” addition can help.
• Carry-save addition passes

(saves) the carries to the output,
rather than propagating them.

• Example: sum three numbers,
 310 = 0011, 210 = 0010, 310 = 0011

 310 0011
+ 210 0010
 c 0100 = 410
 s 0001 = 110

 310 0011
 c 0010 = 210

 s 0110 = 610

 1000 = 810

carry-save add

carry-save add

carry-propagate add

• In general, carry-save addition takes in 3 numbers and produces 2.
• Sometimes called a “3:2 compressor”: 3 input signals into 2 in a potentially lossy

operation
• Whereas, carry-propagate takes 2 and produces 1.
• With this technique, we can avoid carry propagation until final addition

35

Carry Save Addition

EE141

2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

36

Signed Multiplication

Page

Bit-serial Multiplier
• Bit-serial multiplier (n2 cycles, one bit of result per n cycles):

• Control Algorithm:

repeat n cycles { // outer (i) loop
 repeat n cycles{ // inner (j) loop
 shiftA, selectSum, shiftHI
 }
 shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control
signal x means x=1. The absence
of x means x=0.

37

Bit-Serial Multiplication

EE141

Booth recoding

BK+1
0
0
0
0
1
1
1
1

BK
0
0
1
1
0
0
1
1

BK-1
0
1
0
1
0
1
0
1

action
add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage needed to add 4*A. Since
this stage is shifted by 2 bits with respect to the previous stage,
adding 4*A in the previous stage is like adding A in this stage!

-2*A+A

-A+A

from previous bit paircurrent bit pair
(On-the-fly canonical signed digit encoding!)

BK+1,K*A = 0*A → 0
 = 1*A → A
 = 2*A → 4A – 2A
 = 3*A → 4A – A

38

Booth Encoding Multiplication

EE141

Canonic Signed Digit Representation
❑ CSD represents numbers using 1, 1, & 0 with the least

possible number of non-zero digits.
▪ Strings of 2 or more non-zero digits are replaced.
▪ Leads to a unique representation.

❑ To form CSD representation might take 2 passes:
▪ First pass: replace all occurrences of 2 or more 1’s:
 01..10 by 10..10
▪ Second pass: same as above, plus replace 0110 by 0010

and 0110 by 0010
❑ Examples:

❑ Can we further simplify the multiplier circuits?

0010111 = 23
0011001
0101001 = 32 - 8 - 1011101 = 29

100101 = 32 - 4 + 1

0110110 = 54
1011010
1001010 = 64 - 8 - 2

39

CSD Multiplier Design

EE141

Log Shifter / Rotator
❑ Log(N) stages, each shifts (or not) by a power of 2 places, S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1

Log and Barrel Shifters Design and Analysis

EE141

Barrel Shifter
❑ Cost/delay?

▪ (don’t forget the
decoder)

41

Log and Barrel Shifters Design and Analysis

EE141

Clock Constraints in
Edge-Triggered Systems

42

If launching edge is late and receiving edge is early, the data will not be too late if:

Minimum cycle time is determined by the maximum delays through the logic

tclk-q,max + tlogic,max + tsetup < TCLK – tJS,1 – tJS,2 + δ

tclk-q,max + tlogic,max + tsetup - δ + 2tJS < TCLK

Skew can be either positive or negative
Jitter tJS usually expressed as peak-to-peak or n x RMS value

Effect of Clock Uncertainties on Maximum Clock Frequency

EE141

Clock Constraints in Edge-Triggered
Systems

43

Minimum logic delay

If launching edge is early and receiving edge is late:

tclk-q,min + tlogic,min – tJS,1 > thold + tJS,2 + δ

tclk-q,min + tlogic,min > thold + 2tJS+ δ
(This assumes jitter at launching and receiving clocks are
independent – which usually is not true)

EE141

Clock Uncertainties
Sources of clock uncertainty

44

Source of Clock Uncertainties

EE141

H-Tree

45

Equal wire length/number of buffers to get to every location

Principles of Good Clock Distribution

EE141

Power Supply Impedance
❑ No voltage source is ideal - ||Z|| > 0
❑ Two principal elements increase Z:
▪ Resistance of supply lines (IR drop)
▪ Inductance of supply lines (L⋅di/dt drop)

46

IR and dI/dt effects in Power distribution

EE141 47

The End.

❑ Special thanks to our GSIs: Yukio, Rahul, Dhruv,
Lux, and Daniel (reader).

❑ Good luck on the final.

❑ Thanks for a great semester!

