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Announcements
❑ Homework assignment 10 posted - due next Monday.  
❑ HW 11 - final problem set - posted end of this week. 
❑ Final project checkoffs will be Thursday of next week 

(RRR). 
❑ Final reports will be due Monday at midnight of exam 

week. 
❑ Apple has generously offered to offer prizes for the 

best projects this semester: 
❑ The top ASIC project (2 students), & the top 3 FPGA 

projects (6 students) 
❑ The student can choose either an Apple Watch (SE 

GPS, 40mm) or Airpod Pro.  
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Outline
❑ Important takeaways 
❑ Exam Topics 
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Why Study and Learn Digital Design?
❑ We expect that many of you will eventually be employed 

as designers.  
▪ Digital design is not a spectator sport.  The only way to learn 

it, and to appreciate the issues, is to do it.   
▪ To a large extent, it comes with practice/experience (this course is 

just the beginning). 
▪ Another way to get better is to study other designs.  Not time to 

do much of this during the semester, but a good practice for later. 
❑ However, a significant percentage of our graduates will not 

be digital designers.  What’s in it for them? 
▪ Better manager of designers, marketers, field engineers, etc. 
▪ Better researcher/scientist/designer in related areas 

– Software engineers, fabrication process development, etc. 
▪ Even to become a better user of electronic systems.
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In What Context Will You be Designing?

❑ Electronic design is a critical tool for most areas of pure science: 
▪ Astrophysics – special electronics used for processing radio antenna 

signals. 
▪ Genomics – special processing architectures for DNA string matching. 
▪ In general - sensor processing, control, and number crunching.   
▪ Machine Learning now relies heavily on special hardware. 
▪ In some fields, computation has replaced experimentation – particle 

physics, world weather prediction (fluid dynamics). 
❑ In computer engineering, prototypes often designed, implemented, and 

studied to “prove out” an idea.  Common within universities and 
industrial research labs.  Lessons learned and proven ideas often 
transferred to industry through licensing, technical communications, or 
startup companies. 
▪ RISC processors were first proved out at Berkeley and IBM Research

Engineers learn so that they can build.   

Scientists build so that they can learn.
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Designs in Industry
❑ Of course, companies are the primary employer of 

designers.  Provide some useful products to society or 
government and make a profit for the shareholders.

❑ Interesting recent shift 
▪ All software giants now  

have hardware design  
teams (embedded and 
chips) 

▪ Google, Amazon, 
Facebook,  
Microsoft, … 
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Ten Big Ideas from EECS151
1. Modularity and Hierarchy is an 

important way to describe and 
think about digital systems. 

2. Parallelism is a key property of 
hardware systems and 
distinguishes them from serial 
software execution. 

3. Clocking and the use of state 
elements (latches, flip-flops, and 
memories) control the flow of 
data. 

4. Cost/Performance/Power 
tradeoffs are possible at all 
levels of the system design. 

5. Boolean Algebra and other logic 
representations.

6. Hardware Description Languages 
(HDLs) and Logic Synthesis are 
a central tool for digital design. 

7. Datapath + Controller is a 
effective design pattern. 

8. Finite State Machines abstraction 
gives us a way to model any 
digital system – used for designing 
controllers. 

9. Arithmetic circuits are often 
based on “long-hand” arithmetic 
techniques. 

10.FPGAs + ASICs give us a 
convenient and flexible 
implementation technology.
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What We Didn’t Cover
❑ Design Verification and Testing 

▪ Industrial designers spend more than half their time testing and 
verifying correctness of their designs. 

– Some of this covered in the lab and a bit in lecture.  Didn’t cover 
rigorous testing procedures. 

▪ Most industrial products are designed from the start for testability.  
Important for design verification and later for manufacturing test. 

▪ Related: Fault modeling and fault tolerant design. 

❑ Other High-level Optimization Techniques 
▪ High-level Synthesis - now starting to catch on 

❑ Other High-level Architectures: GPUs, video processing, 
network routers, … 

❑ Asynchronous Design
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Most Closely Related Courses
❑ CS152 Computer Architecture and Engineering 

▪ Design and Analysis of Microprocessors 
▪ Applies basic design concepts from EECS151 

❑ EE251B Advanced Digital Integrated Circuits and 
Systems 
▪ Transistor-level design of ICs 
▪ More on Advanced ASIC Tool use 

❑ EE 194/290C: The Tapeout Class

9
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Future Design Issues
❑ Automatic High-level synthesis (HLS) and optimization (with 

micro-architecture synthesis) and hardware/software co-design. 
❑ Machine Learning and Digital Design:  

▪ Can ML techniques help us design better systems or do it more quickly? 
❑ Current practice is “system on a chip” (SOC) design 

methodology: 
▪ Pre-designed subsystems (processor cores, bus controllers, memory 

systems, network interfaces, etc. ) connected with standard on-chip 
interconnect or bus. 

▪ Strong emphasis on “accelerators” for energy efficiency and 
performance. 

❑ A number of alternatives to silicon VLSI have been proposed, 
including techniques based on:  
▪ Carbon nanotubes*, molecular electronics, quantum mechanics, and 

biological processes. 
▪ How will these change the way we design systems?

*In 2012, IBM produced a sub-10 nm carbon nanotube transistor that outperformed silicon on speed and power.[15] "The 
superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in 
future aggressively scaled transistor technologies", according to the abstract of the paper in Nano Letters.[16] 

https://en.wikipedia.org/wiki/Carbon_nanotube_field-effect_transistor
https://en.wikipedia.org/wiki/Nano_Letters
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Final Exam and Project Info
❑ Exam held Wed, May 10 • 11:30A - 2:30P • 

Physics Building 4 
❑ “Comprehensive” Final Exam  
❑ Emphasis on second half, but some 

coverage of first half 
❑ Same format as Exam 1.  Closed-book and 

notes, one page of notes. 
❑ Project interviews: Thursday of RRR week, 

5/4.   Signup! 
❑ Project final reports due Monday 5/8, midnight.
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Single-Cycle	RISC-V	RV32I	Datapath
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Pipelined Processor

13

Processor Pipelining Hazards and Mechanisms



Sources of Power and Energy consumption in Digital ICs



Some low-power design techniques 

Power-down idle transistors

Parallelism and pipelining 

Slow down non-critical paths

Thermal management

Principles Behind 4 Low-power Design Techniques



Gate delay 
roughly linear 

with Vdd 

This magic trick brought to you by Cory Hall ...
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Replicated DesignsAnd so, we can transform this:

Block processes stereo audio. 1/2  
of clocks for “left”, 1/2 for “right”.

P ~ F ⨯ Vdd
2

P ~ 1 ⨯ 1 2

Into this: Top block processes “left”, bottom “right”.
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How to Improve Energy Efficiency 
through Parallelism and Pipelining
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Memory Architecture Overview
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❑ Word lines used to select a 
row for reading or writing 

❑ Bit lines carry data to/from 
periphery 

❑ Core aspect ratio keep 
close to 1 to help balance 
delay on word line versus 
bit line 

❑ Address bits are divided 
between the two decoders 

❑ Row decoder used to 
select word line 

❑ Column decoder used to 
select one or more columns 
for input/output of data

Memory Block Internal Architecture
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SRAM read/write operations

18

SRAM Cell and Read/Write Operation
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Periphery

❑ Decoders 
❑ Sense Amplifiers 
❑ Input/Output Buffers 
❑ Control / Timing Circuitry

19

Memory Block Periphery Circuits
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Row Decoder • Expands L-K address lines 
into 2L-K word lines 

20

❑ Example: decoder for 
8Kx8 memory block  
❑ core arranged as 

256x256 cells 
❑ Need 256 AND gates, 

each driving one word 
line

Memory Decoder Design



EE141

Write: C S is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

1-Transistor DRAM Cell

21

VBL

CS << CBL

VBIT= 0 or  (VDD – VT)

❑ To get sufficient Cs, special IC process is used   
❑ Cell reading is destructive, therefore read operation always is followed by a 

write-back 
❑ Cell looses charge (leaks away in ms - highly temperature dependent), 

therefore cells occasionally need to be “refreshed” - read/write cycle

DRAM Cell and Read/Write Operation
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Dual-ported Memory Internals
❑ Add decoder, another set of 

read/write logic, bits lines, word 
lines:

deca decb
cell 

array

r/w logic

r/w logic

data ports
address 

ports

• Example cell: SRAM 

• Repeat everything but cross-coupled 
inverters. 

• This scheme extends up to a couple 
more ports, then need to add 
additional transistors.

b2 b2b1 b1

WL2

WL1

Dual-port Memory Architecture
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Cascading Memory-Blocks
How to make larger memory blocks out of smaller ones.

Increasing the depth.  Example: given 1Kx8, want 2Kx8

23

Cascading Memory blocks for More Width, Depth, and Ports 
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FIFO Implementation Details
• Assume, dual-port memory with asynchronous read, 

synchronous write. 
• Binary counter for each of read and write address.  

CEs (count enable) controlled by WE and RE. 
• Equal comparator to see when pointers match. 
• State elements for FULL and EMPTY flags: 
  

  • Control logic (FSM) with 
truth-table (draft) shown to 
left.

   WE RE equal*  EMPTYi  FULLi 

       0  0      0         0            0 
       0  0      1     EMPTYi-1   FULLi-1 
           0  1      0          0            0 
                      0  1      1          1            0 
                      1  0      0          0            0 
                      1  0      1          0            1 
                      1  1      0          0            0 
                      1  1      1     EMPTYi-1   FULLi-1 
     

* Actually need 2 signals: “will be 
equal after read” and “will be equal 
after write” 

FIFO Implementation
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Time-Multiplexing
• Time multiplex single ALU for 

all adds and multiplies: 
• Attempts to minimize cost at 

the expense of time. 
– Need to add extra register, 

muxes, control.

• If we adopt above approach, we can then consider the combinational 
hardware circuit diagram as an abstract computation-graph. 

• This time-multiplexing “covers” the computation graph by performing 
the action of each node one at a time.  (Sort of emulates it.)

Using other primitives, other 
coverings are possible.

25

Serialization versus Parallelization in Iterative Computations
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Limits on Pipelining
• Without FF overhead, throughput improvement α # of stages. 
• After many stages are added FF overhead begins to dominate: 

• Other limiters to effective pipelining: 
– clock skew contributes to clock overhead 
– unequal stages 
– FFs dominate cost 
– clock distribution power consumption 
– feedback (dependencies between loop iterations)

FF “overhead” 
is the setup and  
clk to Q times.

26

Principles of Pipelining and Restrictions of Loops
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Pipelining Loops with Feedback

However, we can overlap the “non-
feedback” part of the iterations: 

Add is associative and communitive.  
Therefore we can reorder the 
computation to shorten the delay 
of the feedback path: 

 yi  =  (yi-1 + xi) + a  =  (a + xi) + yi-1 

    add1    xi+a   xi+1+a   xi+2+a  

      add2              yi              yi+1       yi+2

• Pipelining is limited to 2 stages.

“Loop carry dependency”

“Shorten” the 
feedback path.

27

Principles of Pipelining and Restrictions of Loops
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“C-slow” Technique
• Essentially this means we go 

ahead and cut feedback path: 

• This makes operations in 
adjacent pipeline stages 
independent and allows full cycle 
for each:

• C computations (in this case 
C=2) can use the pipeline 
simultaneously.   

• Must be independent. 
• Input MUX interleaves input 

streams.   
• Each stream runs at half the 

pipeline frequency. 
• Pipeline achieves full 

throughput.

add1     x+b       x+b       x+b      x+b       x+b       x+b 
mult    ay         ay              ay        ay         ay              ay 
add2          y           y                y          y           y                 y 

28

Multithreaded Processors use this.

C-Slow Technique for Pipelining Loops
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5. Optimization, Architecture #4

❑ Datapath: 

❑ Incremental cost: 
– Addition of another register & mux, adder mux,  and control. 

❑ Performance: find max time of the four actions 
  1. XßMemory[NUMA],   0.5+1+10+1+0.5 = 13ns  
      NUMAßNEXT+1; same for all ⇒ T>13ns, F<77MHz 
  2. NEXTßMemory[NEXT],   
      SUMßSUM+X;

LD_NUMA

29

List Processor Design and Optimizations
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nexti

Modulo Scheduling List Processor

• Finished schedule for 4 iterations:

nexti 
NEXTßMemory[NEXT]

numai 
NUMAßNEXT+1

xi 
XßMemory[NUMA]

sumi 
SUMßSUM+X

• Assuming a single adder and a single ported 
memory.  Minimal schedule section length = 2.   
Because both memory and adder are used for 2 

cycles during one iteration.

Memory   next1                        next2          x1        next3       x2         next4       x3  
adder              numa1                    numa2  sum1    numa3   sum2     numa4    sum3 

numai

memory

adder

nexti
numai

memory

adder
Xi-1

nexti
numai

memory

adder
Xi-1

sumi-2

wrap-around, 
decrease subscript

wrap-around, 
decrease subscript

30

Modulo Scheduling
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Carry Select Adder
❑ Extending Carry-select to multiple blocks 

❑ What is the optimal # of blocks and # of bits/block? 
▪ If blocks too small delay dominated by total mux delay 
▪ If blocks too large delay dominated by adder ripple delay

T α sqrt(N), 
Cost ≈2*ripple + muxes 31

Carry Select Adder Design
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Parallel Prefix Adder Example

G = g1 + g0 p1 
P = p1p0

g1 p1g2 p2g3 p3

G = g2 + g1 p2 
P = p2p1

G = g3 + g2 p3 
P = p3p2

g0 p0

G = g2 + g1 p2 + g0p2p1 

      = c3
G = g3 + g2 p3 +(g1 + g0p1)p3p2 

      = g3 + g2p3 + g1p3p2 + g0p3p2p1 

      = c4

 c2

 c1

si = ai ⊕ bi ⊕ ci  = pi ⊕ ci 
32

Carry Lookahead and Parallel Prefix Adders
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Bit-serial Adder

❑ Addition of 2 n-bit numbers: 
▪ takes n clock cycles, 
▪ uses 1 FF, 1 FA cell, plus registers 
▪ the bit streams may come from or go to other circuits, therefore the 

registers might not be needed.

• A, B, and R held in shift-registers.  
Shift right once per clock cycle. 

• Reset is asserted by controller.

33

Bit-Serial Addition
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Combinational Multiplier (unsigned)
                        X3   X2   X1   X0 
                     *  Y3   Y2   Y1   Y0 
                     -------------------- 
                      X3Y0 X2Y0 X1Y0 X0Y0 
+                X3Y1 X2Y1 X1Y1 X0Y1 
+           X3Y2 X2Y2 X1Y2 X0Y2 
+      X3Y3 X2Y3 X1Y3 X0Y3 
----------------------------------------- 
    Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

Propagation delay ~2N

multiplicand
multiplier

Partial products, one for each bit in 
multiplier (each bit needs just one 
AND gate)

34

Array Multiplier Design
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Carry-Save Addition
• Speeding up multiplication is a 

matter of speeding up the 
summing of the partial products. 

• “Carry-save” addition can help. 
• Carry-save addition passes 

(saves) the carries to the output, 
rather than propagating them.

• Example: sum three numbers, 
 310 = 0011, 210 = 0010, 310 = 0011 

    310  0011 
+  210  0010 
       c  0100  =  410    
       s  0001  =  110 

       310  0011 
       c  0010  =  210 

       s  0110  =  610 

           1000  =  810 

 

carry-save add

carry-save add

carry-propagate add

• In general, carry-save addition takes in 3 numbers and produces 2. 
• Sometimes called a “3:2 compressor”: 3 input signals into 2 in a potentially lossy 

operation 
• Whereas, carry-propagate takes 2 and produces 1. 
• With this technique, we can avoid carry propagation until final addition 
 

35

Carry Save Addition



EE141

2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

36

Signed Multiplication
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Bit-serial Multiplier
• Bit-serial multiplier (n2 cycles, one bit of result per n cycles): 

• Control Algorithm:

repeat n cycles {  // outer (i) loop 
 repeat n cycles{   // inner (j) loop 
  shiftA, selectSum, shiftHI 
 } 
 shiftB, shiftHI, shiftLOW, reset 
}

Note: The occurrence of a control 
signal x means x=1.  The absence 
of x means x=0.

37

Bit-Serial Multiplication
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Booth recoding

BK+1 
0 
0 
0 
0 
1 
1 
1 
1

BK 
0 
0 
1 
1 
0 
0 
1 
1

BK-1 
0 
1 
0 
1 
0 
1 
0 
1

action 
add 0 
add A 
add A 

add 2*A 
sub 2*A 
sub A 
sub A 
add 0

A “1” in this bit means the previous stage needed to add 4*A.  Since 
this stage is shifted by 2 bits with respect to the previous stage, 
adding 4*A in the previous stage is like adding A in this stage!

-2*A+A

-A+A

from previous bit paircurrent bit pair
(On-the-fly canonical signed digit encoding!)

BK+1,K*A = 0*A → 0 
             = 1*A → A 
             = 2*A → 4A – 2A 
             = 3*A → 4A – A

38

Booth Encoding Multiplication
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Canonic Signed Digit Representation
❑ CSD represents numbers using 1, 1, & 0 with the least 

possible number of non-zero digits.   
▪ Strings of 2 or more non-zero digits are replaced. 
▪ Leads to a unique representation. 

❑ To form CSD representation might take 2 passes: 
▪ First pass: replace all occurrences of 2 or more 1’s:  
    01..10 by 10..10 
▪ Second pass: same as above, plus replace 0110 by 0010           

and 0110 by 0010  
❑ Examples: 

❑ Can we further simplify the multiplier circuits? 

0010111  =  23 
0011001 
0101001 = 32 - 8 - 1011101  =  29 

100101  =  32 - 4 + 1

0110110  =  54 
1011010 
1001010 = 64 - 8 - 2

39

CSD Multiplier Design
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Log Shifter / Rotator
❑ Log(N) stages, each shifts (or not) by a power of 2 places, S=[s2;s1;s0]:

Shift by N/2

Shift by 2

Shift by 1

Log and Barrel Shifters Design and Analysis
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Barrel Shifter
❑ Cost/delay? 

▪ (don’t forget the 
decoder)

41

Log and Barrel Shifters Design and Analysis
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Clock Constraints in  
Edge-Triggered Systems

42

If launching edge is late and receiving edge is early, the data will not be too late if:

Minimum cycle time is determined by the maximum delays through the logic

tclk-q,max + tlogic,max + tsetup < TCLK – tJS,1 – tJS,2 + δ

tclk-q,max + tlogic,max + tsetup - δ + 2tJS < TCLK

Skew can be either positive or negative 
Jitter tJS usually expressed as peak-to-peak or n x RMS value

Effect of Clock Uncertainties on Maximum Clock Frequency
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Clock Constraints in Edge-Triggered 
Systems

43

Minimum logic delay 

If launching edge is early and receiving edge is late:

tclk-q,min + tlogic,min – tJS,1 > thold + tJS,2 + δ

tclk-q,min + tlogic,min > thold + 2tJS+ δ
(This assumes jitter at launching and receiving clocks are  
independent – which usually is not true)
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Clock Uncertainties
Sources of clock uncertainty

44

Source of Clock Uncertainties
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H-Tree

45

Equal wire length/number of buffers to get to every location

Principles of Good Clock Distribution
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Power Supply Impedance
❑ No voltage source is ideal - ||Z|| > 0 
❑ Two principal elements increase Z: 
▪ Resistance of supply lines (IR drop) 
▪ Inductance of supply lines (L⋅di/dt drop)

46

IR and dI/dt effects in Power distribution
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The End.

❑ Special thanks to our GSIs: Yukio, Rahul, Dhruv, 
Lux, and Daniel (reader). 

❑ Good luck on the final. 

❑ Thanks for a great semester!


