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Outline
❑ Details of Design Metrics 
❑ Digital Logic – Basic 

Concepts 
❑ Design Implementation 

Alternatives 
❑ Design Flows 
❑ ASICs
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Review from Lecture 1
• Moore’s law is slowing down

• There are continued improvements in technology, but at a slower pace, 
and manufacturing costs

• Dennard’s scaling has ended a decade ago
• All designs are now power limited

• Multi-cores, specialization and customization provides added 
performance 

• Under power constraints and slowing technology advances

• Design costs are high
• Methodology and better tools to rescue!

• All design decisions involve tradeoffs between performance, cost, 
and power

• Pareto optimally defines the best designs. 
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Announcements
• Wawrzynek office hours Tuesday 11AM not Thursday

• GSI office hours now posted on website

• ASIC lab0 posted, please complete and checkoff/hand-in with lab1

• First FPGA lab sessions next week

• Problem Set 1 will be posted tomorrow (start early!)

• Waitlisted student have been admitted (except for a few - see me).

• Concurrent enrollment applicants

• Either see me in person Tuesday office hour

• Or email me

• I need to understand your background, situation, and what other 
courses or experiences you have had that prepare you
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Digital Logic
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Implementing Digital Systems
• Given a functional description and performance, cost, & power 

constraints, come up with an implementation using a set of primitives. 
• Digital systems are implemented as a set of combinational logic and 

state elements:
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Inputs OutputsDigital logic block

• What is the methodology we use to implement a digital system?



Design Process through layers of abstractions
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Specification
(e.g. in plain text)

Model
(e.g. in C/C++)

Logic Description
(e.g. in Verilog)

Physical design
(layout; ASIC, FPGA)

Manufactured part

Validation:
is model implementing  

the specification  
and meeting  

the performance?

Verification:
logic/physical design  

correct?
Test:

Does the part work?

Tests and  
test vectors

Validation: Have we built the correct thing?
Verification: Have we built the thing correctly?

Micro-Architecture
(e.g. in-order, out-of-order)

The key to success is that each layer preserves the essential 
functionality and constraints from above, but adds more details.
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Modern (Mostly) Digital System-On-A-Chip (SOC)
• Apple A12 Bionic
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• 2x Large CPUs
• 4x Small CPUs
• GPUs
• Neural processing unit (NPU)
• Lots of memory
• DDR memory interfaces

• 7nm CMOS

• Up to 2.49GHz



Design Metrics
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Basic Design Tradeoffs

• Improve on one at the expense of 
the others 

• Tradeoffs exist at every level in the 
system design

• Design Specification
– Functional Description
– Performance, cost, power 
constraints

• Designer must make the tradeoffs 
needed to achieve the function 
within the constraints 

Performance

Cost

“Pareto Optimal” Frontier

(# of components)

(tasks/sec)



EECS151 L02 DESIGN

Performance

• Throughput
• Number of tasks performed in a unit of time (operations per second)
• E.g. Google TPUv3 board performs 420 TFLOPS (1012 floating-point 

operations per second, where a floating point operation is  
BFLOAT16)

• Watch out for ‘op’ definitions – can be a 1-b ADD or  
a double-precision FP add (or more complex task)

• Peak vs. average throughput

• Latency
• How long does a task take from start to finish
• E.g. facial recognition on a phone takes 10’s of ms
• Sometime expressed in terms of clock cycles
• Average vs. ‘tail’ latency 
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Energy and Power

• Energy (in joules (J))
• Needed to perform a task (energy efficiency tells us J/op)
• Ex: add two numbers or fetch a datum from memory
• Battery stores certain amount of energy (in Ws = J or Wh)
• That is what public utility charges for (in kWh)

• Power (in watts (W)) 
• Energy dissipated per unit time (W = J/s)
• Sets cooling requirements

• Heat spreader, size of a heat sink, forced air, liquid, …
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Liquid
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Cost

• Non-recurring engineering 
(NRE) costs

• Cost to develop a design 
(product) - people, tools, masks

• Amortized over all units shipped
• E.g. $20M in development adds 

$.20 to  
 each of 100M units

• Recurring costs
• Cost to manufacture, test and 

package a unit
• Processed wafer cost is ~$10k 

(around 16nm node) which 
yields:

• 50-100 large FPGAs or GPUs
• 200 laptop CPUs
• >1000 cell phone SoCs 
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Die Cost

Single die
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Wafer

From: http://www.amd.com



Yield & Die Cost
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Die yield = 

How do we calculate “die yield”?



Defects
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α is approximately 3 

Yield = 0.25 Yield = 0.76
Examples:

Given defect density and die area can compute yield and therefore cost.
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Digital Logic 
Basic Concepts
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Logic Gates
ab  c 
00  0 
01  0 
10  0 
11  1

AND ab  c 
00  0 
01  1 
10  1 
11  1

OR NOT a  b 
0  1 
1  0

ab  c 
00  1 
01  1 
10  1 
11  0

NAND ab  c 
00  1 
01  0 
10  0 
11  0

NOR ab  c 
00  0 
01  1 
10  1 
11  0

XOR

❑ Logic gates are often the primitive elements out of which combinational 
logic circuits are constructed.  
▪ In some technologies, there is a one-to-one correspondence between logic 

gate representations and actual circuits (ASIC standard cells have gate 
implementations). 

▪ Other times, we use them just as another abstraction layer (FPGAs have no 
real logic gates). 

❑ How about these gates with more than 2 inputs? 
❑ Do we need all these types?
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Multi-Input Gates

• Single gate in modern CMOS usually 
doesn’t have more than 3-4 inputs

Nikolić, Shao Fall 2019 © UCB 19

NAND3
 

A B C Out
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

NAND3Boolean equation

AOI21 Boolean equation
  A B C Out

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

And-Or-Invert

3-Input NAND
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Logic Gate Implementation
❑ Logic circuits have been built out of many different 

technologies.  If we have a basic logic gate (AND or OR) 
and inversion we can build a complete logic family.  

CMOS Gate

DTL
Hydraulic 

Mechanical LEGO logic gates. 
A clockwise rotation 
represents a binary “one” while 
a counter-clockwise rotation 
represents a binary “zero.”
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Restoration/Regeneration
❑ A necessary property of any suitable technology for logic 

circuits is "Restoration” or “Regeneration” 
❑ Circuits need: 

▪ to ignore noise and other non-idealities at the their inputs, and 
▪ generate "cleaned-up" signals at their output. 

❑ Otherwise, each stage propagates input noise to their 
output and eventually noise and other non-idealities would 
accumulate and signal content would be lost.
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Inverter Example of Restoration

❑ Inverter acts like a “non-linear” amplifier 
❑ The non-linearity is critical to restoration 
❑ Other logic gates act similarly with respect to input/output 

relationship.

Example (look at 1-input gate, to keep it simple):

Idealize Inverter
Actual Inverter 
voltage transfer 
characteristic (VTC)VIN VOUT
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Combinational Logic Blocks
Example four-input Boolean 
function: 

❑ Output a function only of the 
current inputs (no history). 

❑ Truth-table representation of 
function.  Output is explicitly 
specified for each input 
combination. 

❑ In general, CL blocks have more 
than one output signal, in which 
case, the truth-table will have 
multiple output columns.

a b c d         y 
0 0 0 0  F(0,0,0,0) 
0 0 0 1  F(0,0,0,1) 
0 0 1 0  F(0,0,1,0) 
0 0 1 1  F(0,0,1,1) 
0 1 0 0  F(0,1,0,0) 
0 1 0 1  F(0,1,0,1) 
0 1 1 0  F(0,1,1,0) 
1 1 1 1  F(0,1,1,1) 
1 0 0 0  F(1,0,0,0) 
1 0 0 1  F(1,0,0,1) 
1 0 1 0  F(1,0,1,0) 
1 0 1 1  F(1,0,1,1) 
1 1 0 0  F(1,1,0,0) 
1 1 0 1  F(1,1,0,1) 
1 1 1 0  F(1,1,1,0) 
1 1 1 1  F(1,1,1,1)

Truth Table
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Example CL Block
❑ 2-bit adder.  Takes two 2-bit 

integers and produces 3-bit 
result. 

❑ Think about truth table for 32-bit 
adder.  It’s possible to write out, 
but it might take a while!

a1 a0 b1 b0 c2 c1 c0
00 00 000

00 01 001

00 10 010

00 11 011

01 00 001

01 01 010

01 10 011

01 11 100

10 00 010

10 01 011

10 10 100

10 11 101

11 00 011

11 01 100

11 10 101

11 11 110

Theorem:  Any combinational logic function can be 
implemented as a networks of logic gates. 

C = A + B
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Example Logic Circuit

How do we know that these two representations are equivalent?

a b c   y 
0 0 0   0 
0 0 1   0 
0 1 0   0 
0 1 1   1 
1 0 0   0 
1 0 1   1 
1 1 0   1 
1 1 1   1

a

b

c

y

Will come back to this later!

block diagram
Truth Table

One possible logic 
gate implementation 



Sequential Logic Blocks

• Output is a function of both the current inputs and 
the state.

• “State” stored as memory.
• State is a function of previous inputs.
• In synchronous digital systems, state is updated on 

each clock tick.
• “F” is just a combinational logic block.

26

A
B
C F

F (A,B,C,State)

State
n n

This means the way the block responds to a particular input 
depends on what it has seen previously.
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State Elements: circuits that store info

• The value stored by the register appears on the output 
(after a small delay).  

• Until the next load, changes on the data input are ignored 
(unlike CL, where input changes change output). 

• These get used for short term storage (ex: register file), 
and to help move coordinate data movement.

• Examples: registers, 
memory blocks 

• Register: Stores one word.  
Under the control of the 
“load” signal, the register 
captures the input value and 
stores it indefinitely.

register

output

input

load

n

n

often replace by clock signal (clk)
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Register Transfer Level Abstraction (RTL)
Any synchronous digital circuit can be represented with: 

• Combinational Logic Blocks (CL), plus 
• State Elements (registers or memories)

• State elements are 
mixed in with CL 
blocks to remember 
and to control the 
flow of data.

Register file
or

Memory Block

Address
Input Data

Output Data
Write Control

clock

• Sometimes used in 
large groups by 
themselves for 
“long-term” data 
storage.
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Digital Logic Delay

• Changes at the inputs do not instantaneously appear at 
the outputs

• There are finite conductances and capacitances in each gate…

29

• Propagation through a chain of gates is roughly the 
sum of the delay through the individual gates
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Digital Logic Timing
• The longest propagation delay through CL blocks sets the 

maximum clock frequency

• To increase clock rate:
• Find the longest path
• Make it faster

30



EE141

Implementation 
Alternatives & Design Flow
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Implementation Alternative Summary

What are the important metrics of comparison?

Full-custom: All circuits/transistors layouts optimized for 
application.

Standard-cell: Small function blocks/“cells” (gates, FFs) 
automatically placed and routed.

Gate-array 
(structured ASIC):

Partially prefabricated wafers with arrays of 
transistors customized with metal layers or vias.

FPGA: Prefabricated chips customized with loadable latches 
or fuses.

Microprocessor: Instruction set interpreter customized through 
software.

Domain Specific 
Processor:

Special instruction set interpreters (ex: DSP, NP, GPU, 
TPU).

These days, “ASIC” almost always means Standard-cell. 
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Full-Custom
❑ Circuit styles and transistors are custom 

sized and drawn to optimize die, size, power, 
performance. 

❑ High NRE (non-recurring engineering) costs 
▪ Time-consuming and error prone layout 

❑ Hand-optimizing the layout can result in 
small die for low per unit costs, extreme-low-
power, or extreme-high-performance. 

❑ Common today for analog design. 
❑ High NRE usually restricts use to highly-

constrained and cost insensitive markets.
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Standard-Cell* ASIC Design
❑ Based around a set of pre-designed (and verified) cells 

▪ Ex: NANDs, NORs, Flip-Flops, counters slices, buffers, … 
❑ Each cell comes complete with: 

▪  layout (perhaps for different technology nodes and processes), 
▪ Simulation, delay, & power models. 

❑ Chip layout is automatic, reducing NREs (usually no hand-layout). 
❑ (Slightly) less optimal use of area and power, leading to higher per die 

costs than full-custom. 
❑ Commonly used with other predesigned blocks (large memories, I/O 

blocks, etc.)
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Field Programmable Gate Arrays (FPGA)

❑ Fuses, EPROM, or Static RAM cells are used to store the “configuration”.   
▪ Here, it determines function implemented by LUT, selection of Flip-flop, and 

interconnection points. 
❑ Many FPGAs include special circuits to accelerate adder carry-chain and 

many special cores: RAMs, MAC, Enet, PCI, SERDES, CPUs, ...

■ Two-dimensional 
array of simple logic- 
and interconnection-
blocks. 

■ Typical architecture: 
Look-up-tables (LUTs) 
implement any 
function of n-inputs 
(n=3 in this case). 

■ Optional connected 
Flip-flop with each 
LUT.
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FPGA versus ASIC

• ASIC: Higher NRE costs (10’s of $M). Relatively Low cost per 
die (10’s of $ or less). 

• FPGAs: Low NRE costs. Relatively low silicon efficiency ⇒ 
high cost per part (> 10’s of $ to 1000’s of $). 

• Cross-over volume from cost effective FPGA design to ASIC 
was often in the 100K range.

volume

total
cost

FPGAs cost 
effective

ASICs cost
effective

FPGA

ASIC
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Microprocessors / Microcontrollers

❑ Where relatively low performance and/or 
high flexibility is needed, a viable 
implementation alternative: 
▪ Software implements desired function 
▪ “Microcontroller”, often with built in nonvolatile 

program memory and used as single function. 
❑ Furthermore, instruction set processors 

(microprocessors) are a ubiquitous 
“abstraction” level.  
▪ “Synthesizable” RTL model (“soft core”, 

available in HDL) 
▪ Often mixed into other digital designs 

❑ Their implementation hosted on a variety 
of implementation platforms: standard-cell 
ASICs, FPGA, other processors?
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System-on-chip (SOC)

❑ Pre-verified block designs, standard bus interfaces (or 
adapters) ease integration - lower NREs, shorten TTM.

• Brings together: standard cell blocks, 
custom analog blocks, processor cores, 
memory blocks, embedded FPGAs, … 

• Standardized on-chip buses (or 
hierarchical interconnect) permit “easy” 
integration of many blocks. 

– Ex: AXI, AMBA, Sonics, …  
• “IP Block” business model: Hard- or soft-

cores available from third party 
designers. 

• ARM, inc. is the shining example.  Hard- 
and “synthesizable” RISC processors. 

• ARM and other companies provide, 
Ethernet, USB controllers, analog 
functions, memory blocks,  …

Qualcomm 
Snapdragon
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ASICs
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Verilog to ASIC layout flow
❑ “push-button” approach

40
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Standard cell layout methodology

❑ With limited # metal layers, dedicated routing channels were needed 
❑ Now, many layers and wires routed over cells.  Currently area often 

dominated by wires

1um, 2-metal process Modern sub-100nm process 
“Transistors are free things  
that fit under wires”

41
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Modern ASIC Methodology and Flow
RTL Synthesis Based 

▪ HDL specifies design as 
combinational logic + state 
elements 

▪ Logic Synthesis converts 
hardware description to gate 
and flip-flop implementation 

▪ Cell instantiations needed for 
blocks not inferred by synthesis 
(typically RAM) 

▪ Event simulation verifies RTL 
▪ “Formal” verification compares 

logical structure of gate netlist 
to RTL  

▪ Place & route generates layout 
▪ Timing and power checked 

statically 
▪ Layout verified with LVS and 

GDRC

RTL (Verilog/VHDL) + cell instantiations

logic 
synthesis

event 
simulator

cell place & route

GDSII timing/
power 

analysis

“formal” 
verification

Specification

gate netlist (with area/perf/pwr estimates)

GDRC, LVS, other checks
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Standard cell design
❑ Layout considerations
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Standard cell characterization
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“Macro” modules
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End of Lecture 2
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