
EE141

EECS 151/251A
Spring	2023	
Digital	Design	and	Integrated	
Circuits
Instructor:		
J.	Wawrzynek

Lecture 2: Design

EE141

Outline
❑ Details of Design Metrics
❑ Digital Logic – Basic

Concepts
❑ Design Implementation

Alternatives
❑ Design Flows
❑ ASICs

2

EECS151 L02 DESIGN

Review from Lecture 1
• Moore’s law is slowing down

• There are continued improvements in technology, but at a slower pace,
and manufacturing costs

• Dennard’s scaling has ended a decade ago
• All designs are now power limited

• Multi-cores, specialization and customization provides added
performance

• Under power constraints and slowing technology advances

• Design costs are high
• Methodology and better tools to rescue!

• All design decisions involve tradeoffs between performance, cost,
and power

• Pareto optimally defines the best designs.
3

Announcements
• Wawrzynek office hours Tuesday 11AM not Thursday

• GSI office hours now posted on website

• ASIC lab0 posted, please complete and checkoff/hand-in with lab1

• First FPGA lab sessions next week

• Problem Set 1 will be posted tomorrow (start early!)

• Waitlisted student have been admitted (except for a few - see me).

• Concurrent enrollment applicants

• Either see me in person Tuesday office hour

• Or email me

• I need to understand your background, situation, and what other
courses or experiences you have had that prepare you

4

Digital Logic

EECS151 L02 DESIGN

Implementing Digital Systems
• Given a functional description and performance, cost, & power

constraints, come up with an implementation using a set of primitives.
• Digital systems are implemented as a set of combinational logic and

state elements:

6

Inputs OutputsDigital logic block

• What is the methodology we use to implement a digital system?

Design Process through layers of abstractions

7

Specification
(e.g. in plain text)

Model
(e.g. in C/C++)

Logic Description
(e.g. in Verilog)

Physical design
(layout; ASIC, FPGA)

Manufactured part

Validation:
is model implementing  

the specification  
and meeting  

the performance?

Verification:
logic/physical design  

correct?
Test:

Does the part work?

Tests and  
test vectors

Validation: Have we built the correct thing?
Verification: Have we built the thing correctly?

Micro-Architecture
(e.g. in-order, out-of-order)

The key to success is that each layer preserves the essential
functionality and constraints from above, but adds more details.

EECS151 L02 DESIGN

Modern (Mostly) Digital System-On-A-Chip (SOC)
• Apple A12 Bionic

8

• 2x Large CPUs
• 4x Small CPUs
• GPUs
• Neural processing unit (NPU)
• Lots of memory
• DDR memory interfaces

• 7nm CMOS

• Up to 2.49GHz

Design Metrics

EE141 10

Basic Design Tradeoffs

• Improve on one at the expense of
the others

• Tradeoffs exist at every level in the
system design

• Design Specification
– Functional Description
– Performance, cost, power
constraints

• Designer must make the tradeoffs
needed to achieve the function
within the constraints

Performance

Cost

“Pareto Optimal” Frontier

(# of components)

(tasks/sec)

EECS151 L02 DESIGN

Performance

• Throughput
• Number of tasks performed in a unit of time (operations per second)
• E.g. Google TPUv3 board performs 420 TFLOPS (1012 floating-point

operations per second, where a floating point operation is  
BFLOAT16)

• Watch out for ‘op’ definitions – can be a 1-b ADD or  
a double-precision FP add (or more complex task)

• Peak vs. average throughput

• Latency
• How long does a task take from start to finish
• E.g. facial recognition on a phone takes 10’s of ms
• Sometime expressed in terms of clock cycles
• Average vs. ‘tail’ latency

11

EECS151 L02 DESIGN

Energy and Power

• Energy (in joules (J))
• Needed to perform a task (energy efficiency tells us J/op)
• Ex: add two numbers or fetch a datum from memory
• Battery stores certain amount of energy (in Ws = J or Wh)
• That is what public utility charges for (in kWh)

• Power (in watts (W))
• Energy dissipated per unit time (W = J/s)
• Sets cooling requirements

• Heat spreader, size of a heat sink, forced air, liquid, …

12

Liquid

EECS151 L02 DESIGN

Cost

• Non-recurring engineering
(NRE) costs

• Cost to develop a design
(product) - people, tools, masks

• Amortized over all units shipped
• E.g. $20M in development adds

$.20 to  
 each of 100M units

• Recurring costs
• Cost to manufacture, test and

package a unit
• Processed wafer cost is ~$10k

(around 16nm node) which
yields:

• 50-100 large FPGAs or GPUs
• 200 laptop CPUs
• >1000 cell phone SoCs

13

Die Cost

Single die

14

Wafer

From: http://www.amd.com

Yield & Die Cost

15

Die yield =

How do we calculate “die yield”?

Defects

16

α is approximately 3

Yield = 0.25 Yield = 0.76
Examples:

Given defect density and die area can compute yield and therefore cost.

EE141

Digital Logic
Basic Concepts

EE141
18

Logic Gates
ab c
00 0
01 0
10 0
11 1

AND ab c
00 0
01 1
10 1
11 1

OR NOT a b
0 1
1 0

ab c
00 1
01 1
10 1
11 0

NAND ab c
00 1
01 0
10 0
11 0

NOR ab c
00 0
01 1
10 1
11 0

XOR

❑ Logic gates are often the primitive elements out of which combinational
logic circuits are constructed.
▪ In some technologies, there is a one-to-one correspondence between logic

gate representations and actual circuits (ASIC standard cells have gate
implementations).

▪ Other times, we use them just as another abstraction layer (FPGAs have no
real logic gates).

❑ How about these gates with more than 2 inputs?
❑ Do we need all these types?

EECS151 L02 DESIGN

Multi-Input Gates

• Single gate in modern CMOS usually
doesn’t have more than 3-4 inputs

Nikolić, Shao Fall 2019 © UCB 19

NAND3

A B C Out
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

NAND3Boolean equation

AOI21 Boolean equation
 A B C Out

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

And-Or-Invert

3-Input NAND

EE141
20

Logic Gate Implementation
❑ Logic circuits have been built out of many different

technologies. If we have a basic logic gate (AND or OR)
and inversion we can build a complete logic family.

CMOS Gate

DTL
Hydraulic

Mechanical LEGO logic gates.
A clockwise rotation
represents a binary “one” while
a counter-clockwise rotation
represents a binary “zero.”

EE141
21

Restoration/Regeneration
❑ A necessary property of any suitable technology for logic

circuits is "Restoration” or “Regeneration”
❑ Circuits need:

▪ to ignore noise and other non-idealities at the their inputs, and
▪ generate "cleaned-up" signals at their output.

❑ Otherwise, each stage propagates input noise to their
output and eventually noise and other non-idealities would
accumulate and signal content would be lost.

EE141
22

Inverter Example of Restoration

❑ Inverter acts like a “non-linear” amplifier
❑ The non-linearity is critical to restoration
❑ Other logic gates act similarly with respect to input/output

relationship.

Example (look at 1-input gate, to keep it simple):

Idealize Inverter
Actual Inverter
voltage transfer
characteristic (VTC)VIN VOUT

EE141
23

Combinational Logic Blocks
Example four-input Boolean
function:

❑ Output a function only of the
current inputs (no history).

❑ Truth-table representation of
function. Output is explicitly
specified for each input
combination.

❑ In general, CL blocks have more
than one output signal, in which
case, the truth-table will have
multiple output columns.

a b c d y
0 0 0 0 F(0,0,0,0)
0 0 0 1 F(0,0,0,1)
0 0 1 0 F(0,0,1,0)
0 0 1 1 F(0,0,1,1)
0 1 0 0 F(0,1,0,0)
0 1 0 1 F(0,1,0,1)
0 1 1 0 F(0,1,1,0)
1 1 1 1 F(0,1,1,1)
1 0 0 0 F(1,0,0,0)
1 0 0 1 F(1,0,0,1)
1 0 1 0 F(1,0,1,0)
1 0 1 1 F(1,0,1,1)
1 1 0 0 F(1,1,0,0)
1 1 0 1 F(1,1,0,1)
1 1 1 0 F(1,1,1,0)
1 1 1 1 F(1,1,1,1)

Truth Table

EE141
24

Example CL Block
❑ 2-bit adder. Takes two 2-bit

integers and produces 3-bit
result.

❑ Think about truth table for 32-bit
adder. It’s possible to write out,
but it might take a while!

a1 a0 b1 b0 c2 c1 c0
00 00 000

00 01 001

00 10 010

00 11 011

01 00 001

01 01 010

01 10 011

01 11 100

10 00 010

10 01 011

10 10 100

10 11 101

11 00 011

11 01 100

11 10 101

11 11 110

Theorem: Any combinational logic function can be
implemented as a networks of logic gates.

C = A + B

EE141
25

Example Logic Circuit

How do we know that these two representations are equivalent?

a b c y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

a

b

c

y

Will come back to this later!

block diagram
Truth Table

One possible logic
gate implementation

Sequential Logic Blocks

• Output is a function of both the current inputs and
the state.

• “State” stored as memory.
• State is a function of previous inputs.
• In synchronous digital systems, state is updated on

each clock tick.
• “F” is just a combinational logic block.

26

A
B
C F

F (A,B,C,State)

State
n n

This means the way the block responds to a particular input
depends on what it has seen previously.

EE141
27

State Elements: circuits that store info

• The value stored by the register appears on the output
(after a small delay).

• Until the next load, changes on the data input are ignored
(unlike CL, where input changes change output).

• These get used for short term storage (ex: register file),
and to help move coordinate data movement.

• Examples: registers,
memory blocks

• Register: Stores one word.
Under the control of the
“load” signal, the register
captures the input value and
stores it indefinitely.

register

output

input

load

n

n

often replace by clock signal (clk)

EE141
28

Register Transfer Level Abstraction (RTL)
Any synchronous digital circuit can be represented with:

• Combinational Logic Blocks (CL), plus
• State Elements (registers or memories)

• State elements are
mixed in with CL
blocks to remember
and to control the
flow of data.

Register file
or

Memory Block

Address
Input Data

Output Data
Write Control

clock

• Sometimes used in
large groups by
themselves for
“long-term” data
storage.

EECS151 L02 DESIGN

Digital Logic Delay

• Changes at the inputs do not instantaneously appear at
the outputs

• There are finite conductances and capacitances in each gate…

29

• Propagation through a chain of gates is roughly the
sum of the delay through the individual gates

EECS151 L02 DESIGN

Digital Logic Timing
• The longest propagation delay through CL blocks sets the

maximum clock frequency

• To increase clock rate:
• Find the longest path
• Make it faster

30

EE141

Implementation
Alternatives & Design Flow

EE141
32

Implementation Alternative Summary

What are the important metrics of comparison?

Full-custom: All circuits/transistors layouts optimized for
application.

Standard-cell: Small function blocks/“cells” (gates, FFs)
automatically placed and routed.

Gate-array
(structured ASIC):

Partially prefabricated wafers with arrays of
transistors customized with metal layers or vias.

FPGA: Prefabricated chips customized with loadable latches
or fuses.

Microprocessor: Instruction set interpreter customized through
software.

Domain Specific
Processor:

Special instruction set interpreters (ex: DSP, NP, GPU,
TPU).

These days, “ASIC” almost always means Standard-cell.

EE141
33

Full-Custom
❑ Circuit styles and transistors are custom

sized and drawn to optimize die, size, power,
performance.

❑ High NRE (non-recurring engineering) costs
▪ Time-consuming and error prone layout

❑ Hand-optimizing the layout can result in
small die for low per unit costs, extreme-low-
power, or extreme-high-performance.

❑ Common today for analog design.
❑ High NRE usually restricts use to highly-

constrained and cost insensitive markets.

EE141
34

Standard-Cell* ASIC Design
❑ Based around a set of pre-designed (and verified) cells

▪ Ex: NANDs, NORs, Flip-Flops, counters slices, buffers, …
❑ Each cell comes complete with:

▪ layout (perhaps for different technology nodes and processes),
▪ Simulation, delay, & power models.

❑ Chip layout is automatic, reducing NREs (usually no hand-layout).
❑ (Slightly) less optimal use of area and power, leading to higher per die

costs than full-custom.
❑ Commonly used with other predesigned blocks (large memories, I/O

blocks, etc.)

EE141
35

Field Programmable Gate Arrays (FPGA)

❑ Fuses, EPROM, or Static RAM cells are used to store the “configuration”.
▪ Here, it determines function implemented by LUT, selection of Flip-flop, and

interconnection points.
❑ Many FPGAs include special circuits to accelerate adder carry-chain and

many special cores: RAMs, MAC, Enet, PCI, SERDES, CPUs, ...

■ Two-dimensional
array of simple logic-
and interconnection-
blocks.

■ Typical architecture:
Look-up-tables (LUTs)
implement any
function of n-inputs
(n=3 in this case).

■ Optional connected
Flip-flop with each
LUT.

EE141
36

FPGA versus ASIC

• ASIC: Higher NRE costs (10’s of $M). Relatively Low cost per
die (10’s of $ or less).

• FPGAs: Low NRE costs. Relatively low silicon efficiency ⇒
high cost per part (> 10’s of $ to 1000’s of $).

• Cross-over volume from cost effective FPGA design to ASIC
was often in the 100K range.

volume

total
cost

FPGAs cost
effective

ASICs cost
effective

FPGA

ASIC

EE141
37

Microprocessors / Microcontrollers

❑ Where relatively low performance and/or
high flexibility is needed, a viable
implementation alternative:
▪ Software implements desired function
▪ “Microcontroller”, often with built in nonvolatile

program memory and used as single function.
❑ Furthermore, instruction set processors

(microprocessors) are a ubiquitous
“abstraction” level.
▪ “Synthesizable” RTL model (“soft core”,

available in HDL)
▪ Often mixed into other digital designs

❑ Their implementation hosted on a variety
of implementation platforms: standard-cell
ASICs, FPGA, other processors?

EE141
38

System-on-chip (SOC)

❑ Pre-verified block designs, standard bus interfaces (or
adapters) ease integration - lower NREs, shorten TTM.

• Brings together: standard cell blocks,
custom analog blocks, processor cores,
memory blocks, embedded FPGAs, …

• Standardized on-chip buses (or
hierarchical interconnect) permit “easy”
integration of many blocks.

– Ex: AXI, AMBA, Sonics, …
• “IP Block” business model: Hard- or soft-

cores available from third party
designers.

• ARM, inc. is the shining example. Hard-
and “synthesizable” RISC processors.

• ARM and other companies provide,
Ethernet, USB controllers, analog
functions, memory blocks, …

Qualcomm
Snapdragon

EE141

ASICs

EE141

Verilog to ASIC layout flow
❑ “push-button” approach

40

EE141

Standard cell layout methodology

❑ With limited # metal layers, dedicated routing channels were needed
❑ Now, many layers and wires routed over cells. Currently area often

dominated by wires

1um, 2-metal process Modern sub-100nm process
“Transistors are free things
that fit under wires”

41

EE141
42

Modern ASIC Methodology and Flow
RTL Synthesis Based

▪ HDL specifies design as
combinational logic + state
elements

▪ Logic Synthesis converts
hardware description to gate
and flip-flop implementation

▪ Cell instantiations needed for
blocks not inferred by synthesis
(typically RAM)

▪ Event simulation verifies RTL
▪ “Formal” verification compares

logical structure of gate netlist
to RTL

▪ Place & route generates layout
▪ Timing and power checked

statically
▪ Layout verified with LVS and

GDRC

RTL (Verilog/VHDL) + cell instantiations

logic
synthesis

event
simulator

cell place & route

GDSII timing/
power

analysis

“formal”
verification

Specification

gate netlist (with area/perf/pwr estimates)

GDRC, LVS, other checks

EE141

Standard cell design
❑ Layout considerations

43

EE141

Standard cell characterization

44

EE141

“Macro” modules

45

EE141

End of Lecture 2

46

