= FECS 151/251A

% Spring 2023
~ Digital Design and Integrated
Circuits

Instructor:
John Wawrzynek

B Lecture 15: RISC-V Part 2

Announcements

d No class Thursday 3/9.

J Midterm Exam 6-9PM
d Latimer 120 (alternate seating)
d DSP extra time and DS100 conflicts
2 4PM 606 Soda Hall
d Exam covers Lectures 1-12and HW 1 -6

d One double sided handwritten sheet of paper
allowed. No calculators.

d Homework #6 assignment solutions posted
Monday 3/6 - part of exam 1.

d No homework posted Friday 3/3 nor due Monday
3/13.

Implementing Branches

Uses the “B-type” instruction format
31 30 25 24 20 19 15 14 [bl B | 8 i 6 0

imm|12] | imm[10:5] rs2 rsl funct3 imm(4:1] | imm[11] opcode

1 0 O O 3 4 | 7

e RISC-V Assembly Instruction, example:
begq rsl, rs2, label

1f rsl==rs’ pCc «— pC + offset // offset computed by compiler/assembler and
stored 1n the i1mmediate field|(s)

example:
beg x1, x2, L1

 B-format is mostly same as S-Format, with two register sources (rs1/rs2) and a 12-bit
immediate

 But now immediate represents values -4096 to +4094 in 2-byte increments

* The 12 immediate bits encode even 13-bit signed byte offsets (lowest bit of offset is
always zero, so no need to store it)

Review: Adding sw to datapath

E wb
inst[11:7]
pc+4 IMEM
Al 5 .

inst[24:20

inst[31:0]

ImmSel

C

RegWEn

Bsel

ALUSel

I DMEM I .
Addr DataR 0 wb

DataW |
A

MemRW

Adding branches to datapath

IMEM

inst[19:15
inst[24:20

inst[31:0] ImmSel RegWEn BrUnBrEq BrLT ~ BSel ASel ALUSel MemRW

Adding branches to datapath

IMEM

inst[19:15
inst[24:20

PCSel=taken/not-taken inst[31:0] ImmSel=B RegWENn=0 BrUn BrEq BrLT Bsel=1 ASel=1 MemRW=Read WBSel=*

ALUSel=Add

Branch Comparator

e BrEg =1, if A=B
Comp. *BriT=1,ifA<B

* BrUn =1 selects unsighed comparison
for BrLT, O=sighed

* BGE branch: A >=B, if |(A<B)

BrUn BrEq BrLT

RISC-V Immediate Encoding

Instruction Encodings, inst[31:0]

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct?7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode
imm|11:5] rs2 rsl funct3 imm [4:0] opcode
imm([12] | imm][10:5] rs2 rsl funct3 |imm[4:1] | imm[11] | opcode
32-bit immediates produced, imm[31:0]
31 30 20 19 12 11 10 5 4 1 0
— inst[31] — inst[30:25] | inst[24:21] | inst[20]
— inst[31] — inst[30:25] | inst[11:8] | inst[7]
—inst[31] — inst[7] | inst[30:25] | inst[11:8] | O

<

>

Upper bits sigh-extended from inst[31] always

R-type

I-type
S-type

B-type

[-immediate

S-immediate

B-immediate

Only bit 7 of instruction changes role in
immediate between S and B

3

Implementing JALR Instruction (I-Format)

31 20 19 1514 12 11 76
imm|11:0] rsl funct3 rd opcode
12 O 3 O rf
offset|11:0] base 0 dest JALR

* JALR rd, rs, immediate
— Writes PC+4 to Reg|[rd] (return address)
— Sets PC = Reg|rs1] + offset

— Uses same immediates as arithmetic and loads
= no multiplication by 2 bytes

Review: Adding branches to datapath

IMEM

inst[19:15
inst[24:20

inst[31:0] ImmSel RegWEn BrUnBrEq BrLT ~ BSel ASel ALUSel MemRW

10

Adding jalr to datapath

IMEM

inst[19:15
inst[24:20

inst[31:0] ImmSel RegWEn BrUnBrEq BrLT ~ BSel ASel ALUSel MemRW

11

pc+4 B

PCSel

Adding jalr to datapath

2
1
IMEM whb
A 0
WBSel=2

Bsel=1 Asel=0 MemRW=Read
ALUSel=Add

inst[31:0] ImmSel=B RegWEn=1

BrUn=* BrEq=* BrLT=*

12

Implementing jal Instruction

Uses the “J-type” instruction format

31 30 21 20 19 12 11 76 0
imm 20 imm [10:1] imm|11] | imm[19:12] rd opcode
1 10 1 3 5 7
offset|20:1] dest JAL

* JAL saves PC+4 in Reg[rd] (the return address)

* Set PC = PC + offset (PC-relative jump)

* Target somewhere within 219 |ocations, 2 bytes apart
— 1218 32-bit instructions

* Immediate encoding optimized similarly to branch instruction
to reduce hardware cost

13

Adding jal to datapath

inst[19:15
inst[24:20

inst[31:0] ImmSel RegWEn BrUnBrEq BrLT ~ BSel ASel ALUSel MemRW

14

pc+4 B

PCSel

/)

Adding jal to datapath
2

2
1
IMEM whb
0
WBSel=2

Bsel=1 Asel=1 MemRW=Read
ALUSel=Add

inst[31:0] ImmSel=) RegWEn=1

BrUn=* BrEq=* BrLT=*

15

Single-Cycle RISC-V RV32I| Datapath

inst[19:15
inst[24:20

inst[31:0] ImmSel RegWEn BrUnBrEq BrLT ~ BSel ASel ALUSel MemRW

16

Controller Inplementation:

d Control logic works really well as a case
statement...

always @* begin
op = instr[26:31];
imm = instr[15:0]; ...

reg dst = 1'bx; // Don't care
reg write = 1'b0; // By default don’t write

case (op)
6'b000000: begin reg write

1; ... end

Review: Processor Performance

Program Execution Time

= (# instructions)(cycles/instruction)(seconds/cycle)

= # Instructions x CPI1 x T

Single-Cycle Performance

« T islimited by the critical path (1w)

MemtoReg

Control
Unit

MemWrite

Branch

ALUControl

2.0

31:26

ALUSrc
RegDst

RegWrite

CLK

Pr = = =R

Instruction
Memory

WD3

1

Register

File

SrcA

010

_7—3 PCSrc

Zero

WriteData

PCBranch

Single-Cycle Performance

» Single-cycle critical path:
Tc — tq_PC T tmem T max(tRFread; tsext T tmux) T tALU T
tmem + tmux T tRFsetup

* In most implementations, limiting paths are:

— memory, ALU, reqister file.
— Tc — tq_PC T Ztmem T tRFread T tmux T tALU T tRFsetup

Pipelined Processor

o Use temporal parallelism
» Divide single-cycle processor into 5 stages:

— Fetch

— Decode
— Execute
— Memory

— Whriteback
o Add pipeline registers between stages

Single-Cycle vs. Pipelined Performance
Single-Cycle

O 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900’

Instr
Time (ps)

Fetch Decode | Execute Memory Write

Instruction | Read Reg ALU Read / Write | Reg
Fetch Decode | Execute Memory Write
Instruction | Read Reg ALU Read / Write | Reg

2
Instr
1 Fetch Decode | Execute Memory Write
Instruction Read Reg ALU Read/Write | Reg
5 Fetch Decode | Execute Memory Write
Instruction Read Reg ALU Read/Write | Reg
3 Fetch Decode | Execute Memory Write
Instruction Read Reg ALU Read/Write Reg

Single-Cycle and Pipelined Datapath

Instruction
Memory

RD2

A3
Register

PCBranch

CLK
=T ALUOuUtW

CLK

3

InstrD
ReadDataW

Instruction

Memory A2 RD2

Register

bl File

PCBranchM

PCPlus4F PCPlus4D

Execute Writeback

Corrected Pipelined Datapath

 WriteReg must arrive at the same time as Result

5 5 CLK
5 C@K == ALUOUtW
CLK
CLK
A : SrcAE ZeroM |
InstrD ’
I l ALUOuUtM ReadDataW B
Instruction ; RD? >
Memory
Register NriteData WriteDataM
File
WriteRegE, WriteRegM, ., WriteRegW, .,
PCPlus4F PCPlus4D
E : ; 3 Resultw
Fetch i Decode E Execute | Memory ' Writeback

25

Pipelined Control

CLK CLK CLK
—_|RegWriteD [RegWriteE vRegWriteM '<%RegWriteW
Cont.r°| MemtoRegD MemtoRegE MemtoRegM MemtoRegW
unit MemWriteD MemWriteE MemWriteM
BranchD BranchE BranchM_\
—— 0p ALUControlD| ~ [ALUControlE,])yPCSreM
20 Funct | |ALUSKCD ALUSICE
RegDstD | RegDstE U
CLK CLK
CLK
\/

ReadDataW

=

- N~ WES3 SrcAE ZeroM
10 e ~pcr A - InstrD A1 RD1 r
g I ALUOUtM
Instruction AD RD2 .
Memory

S@mmmE
PCPlus4D PCPIlus4E I -

Same control unit as single-cycle processor

WriteDataM

WriteRegM, WriteRegW,

PCPlus4F

Pipeline Hazards

d Occurs when an instruction depends on results from
previous instruction that hasn't completed.

d Types of hazards:
— Data hazard: register value not written back to
register file yet
— Control hazard: next instruction not decided yet
(caused by branches)

We need to design ways to avoid hazards, else we pay the price in
CPI (cycles per instruction) and processor performance suffers.

27

Processor Pipelining

Deeper pipeline example.

IF1 IF2 ID X1 X2 M1 M2 WB
IF1 IF2 ID X1 X2 M1 M2 WB

Deeper pipelines => less logic per stage => high clock rate.
But
Deeper pipelines™ => more hazards => more cost and/or higher CPI.

Cycles per instruction might go up because of unresolvable hazards.

Remember, Performance = # instructions X Frequencyci / CPI

*Many designs included pipelines as long as 7, 10 and even 20 stages (like in the Intel Pentium 4). The later
"Prescott" and "Cedar Mill" Pentium 4 cores (and their Pentium D derivatives) had a 31-stage pipeline.

How about shorter pipelines ... Less cost, less performance (but higher cost efficiency)

28

http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Pentium_4
http://en.wikipedia.org/wiki/Pentium_D

3-Stage Pipeline (used for FPGA/ASIC project

The blocks in the datapath with the greatest
delay are: IMEM, ALU, and DMEM. Allocate

one pipeline stage to each:
AL R S IR R

Use PC register as address Use ALU to compute Access data memory or I/0O

to IMEM and retrieve next result, memory device for load or store.
instruction. Instruction gets address, or branch Allow for setup time for
stored in a pipeline reqister, target address. reqgister file write.

also called “instruction
register”, in this case.

Most details you will need to work out for yourself. Some details to follow ...
In particular, let’s look at hazards.

3-stage Pipeline Data Hazard

add x5, x3, x4 |l X M |
add x7, x6, x5 I X M

reg 5 value needed here! reg 5 value updated here

The fix:
Selectively forward ALU result back to input of ALU.

(control) Need to add mux at input

to ALU, add control logic to

g $\ ; sense when to activate.
SALU |—» [os Check reference for
_ T details.
*}/

31

Load Hazard

lw x5, offset(x4) |I X

[

add x7, x6, x5 I

X

|

value needed here!

The fix: Delay the dependent instruction by one cycle to

v

Memory value known here. It s

/

written into the regfile on this edge.

allow the load to complete, send the result of

load directly to the ALU (and to the regfile).

lw x5, offset(x4) M \
add x7, x6, x5 nop \ nop
add x7, x6, x5 I X M

32

Control Hazard

beq x1, x2, L1l X M
add x5, x3, x4 I X M
add x6, x1,x2| | X M
L1: sub x7, x6, x5 / I X
but needed here! branch address ready here

Several Possibilities:™
The fix: 1. Always delay fetch of instruction after branch
2. Assume branch “not taken”, continue with instruction
at PC+4, and correct later if wrong.
3. Predict branch taken or not based on history (state)
and correct later if wrong.

1. Simple, but all branches now take 2 cycles (lowers performance)
2. Simple, only some branches take 2 cycles (better performance)
3. Complex, very few branches take 2 cycles (best performance)

* MIPS defines “branch delay slot”, RISC-V doesn’t -

Control Hazard

Branch address ready at end of X stage:

» [|f branch “not taken”, do nothing.

» [|f branch “taken”, then kill instruction in | stage (about to
enter X stage) and fetch at new target address (PC)

bneg x1, x1, L1 | X M
add x5, x3, x4 I X M Not taken
add x6, x1, x2 I X M
L1: sub x7, x6, x5 | X
beq x1, x1, L1l X M
add x5, x3, x4 I nop nop Taken

L1: sub x7, x6, x5 I X M

34

EECS151 Project CPU Pipelining Summary

3-stage ‘ | ‘ X ‘ M ‘
pipeline 'instruction’ execute ' access
fetch data
memory

d Pipeline rules:

- Writes/reads to/from DMem are clocked on the leading
edge of the clock in the "M” stage

- Writes to RegFile at the end of the "M" stage
- Instruction Decode and Register File access is up to you.

d Branch: predict "not-taken”

d Load: 1 cycle delay/stall on dependent instruction
d Bypass ALU for data hazards

d More details in upcoming spec

35

End of Lecture 15

