

EECS 151/251A Spring 2023 Digital Design and Integrated Circuits

Instructor:
Wawrzynek

Lecture 14 - Exam1 Review

Announcements

\square No class Thursday 3/9.

- Midterm Exam 6-9PM
- Latimer 120 (alternate seating)
- Exam covers Lectures 1-12 and HW 1-6
- One double sided handwritten sheet of paper allowed. No calculators.
- Homework \#6 assignment solutions posted Monday $3 / 6$ - part of exam 1.
- No homework posted Friday 3/3 nor due Monday 3/13.
- No Wawrzynek office hour(s) today

Review with sample slides

- Do not study only the following slides. These are just representative of what you need to know.
- Go back and study the entire lecture.

Moore's Law - $2 x$ transistors per 1-2 yr

Dennard Scaling

Things we do: scale dimensions, doping, Vdd.

What we get: κ^{2} as many transistors at the same power density!

Whose gates switch κ times faster!
not scaled

TABLE I

Scaling Results for Circuit Performance

Device or Circuit Parameter
Scaling Factor
Device dimension $t_{o x}, L, W$
Doping concentration N_{a}
Voltage V
Current I
Capacitance $\epsilon A / t$
Delay time/circuit VC/I
Power dissipation/circuit VI
Power density $V I / A$
Power density scaling ended in 2003 (Pentium 4: 3.2GHz, 82W, 55M FETs).

Design Space \& Optimality

"Pareto Optimal" Frontier

low-performance at low-cost (\# of components)

Cost

- Non-recurring engineering (NRE) costs
- Cost to develop a design (product)
- Amortized over all units shipped
- E.g. \$20M in development adds $\$.20$ to each of 100M units
- Recurring costs
- Cost to manufacture, test and package a unit
- Processed wafer cost is $\sim 10 \mathrm{k}$ (around 16nm node) which yields:

$$
\text { variable cost }=\frac{\text { cost of die }+ \text { cost of die test }+ \text { cost of packaging }}{}
$$

- 50-100 large FPGAs or GPUs
- 200 laptop CPUs
- >1000 cell phone SoCs

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?

Inverter Example of Restoration

Example (look at 1-input gate, to keep it simple):

Idealize Inverter $V_{\text {IN }}$ - Do- $V_{\text {out }}$

Actual Inverter

- Inverter acts like a "non-linear" amplifier

The non-linearity is critical to restoration

- Other logic gates act similarly with respect to input/output relationship.

Register Transfer Level Abstraction (RTL)

Any synchronous digital circuit can be represented with:

- Combinational Logic Blocks (CL), plus
- State Elements (registers or memories)

- State elements are mixed in with CL blocks to control the flow of data.
- Sometimes used in large groups by themselves for "long-term" data storage.

Implementation Alternative Summary

Full-custom:	All circuits/transistors layouts optimized for application.
Standard-cell:	Small function blocks/"cells" (gates, FFs) automatically placed and routed.
Gate-array (structured ASIC):	Partially prefabricated wafers with arrays of transistors customized with metal layers or vias.
FPGA:	Prefabricated chips customized with loadable latches or fuses.
Microprocessor:	Instruction set interpreter customized through software.
Domain Specific Processor:	Special instruction set interpreters lex: DSP, NP, GPU).

These days, "ASIC" almost always means Standard-cell. What are the important metrics of comparison?

FPGA versus ASIC

- ASIC: Higher NRE costs (10's of \$M). Relatively Low cost per die (10's of \$ or less).
- FPGAs: Low NRE costs. Relatively low silicon efficiency \Rightarrow high cost per part (> 10's of \$ to 1000's of \$).
- Cross-over volume from cost effective FPGA design to ASIC was often in the 100K range.

Hardware Description Languages

Basic Idea:

- Language constructs describe circuits with two basic forms:
- Structural descriptions: connections of components. Nearly one-to-one correspondence to with schematic diagram.
- Behavioral descriptions: use high-level constructs (similar to conventional programming) to describe the circuit function.
Originally invented for simulation.
- "logic synthesis" tools exist to automatically convert to gate level representation.
- High-level constructs greatly improves designer productivity.
- However, this may lead you to falsely believe that hardware design can be reduced to writing programs*
"Structural" example:
Decoder (output $\times 0, x 1, \times 2, \times 3$;

inputs a,b)

f
wire abar, bbar; inv (bbar, b); inv(abar, a); and(x0, abar, bbar); and (x1, abar, b); and (x2, a, bbar); and (x3, a, b);

```
}
```

"Behavioral" example:
Decoder (output x0,x1,x2,x3;

```
    inputs a,b)
```

 f
 case [a b]
 00: \([x 0 \mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 3]=0 \times 8\);
 01: \([x 0\) x1 x2 x3] \(=0 \times 4\);
 10: \([x 0\) x1 x2 x3] \(=0 \times 2\);
 11: \([\mathrm{x} 0 \mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 3]=0 \mathrm{x} 1\);
 endcase;
 \(\}\)
 Warning: this is a fake HDL!
*Describing hardware with a language is similar, however, to writing a parallel program.

Review - Ripple Adder Example

```
module FullAdder(a, b, ci, r, co);
        input a, b, ci;
        output r, co;
    assign r = a ^ b ^ ci;
assign co = a&ci + a&b + b&cin;
endmodule
```


module Adder (A, B, R); input [3:0] A; input [3:0] B; output [4:0] R;
wire c1, c2, c3; FullAdder
 add1 (.a(A[1]), $b(B[1]), . c i(c 1), . c o(c 2), . r(R[1])$, add2 (.a(A[2]), $b(B[2]), . c i(c 2), . c o(c 3), . r(R[2])$), add3(.a(A[3]), .b(B[3]), .ci(c3), .co(R[4]),.r(R[3])); endmodule

Example - Ripple Adder Generator

Parameters give us a way to generalize our designs. A module becomes a "generator" for different variations. Enables design/module reuse. Can simplify testing.

Declare a parameter with default value.
module Adder (A, B, R); parameter $N=4 ;$

Note: this is not a port. Acts like a "synthesis-time" constant. input [N-1:0] B; output [N:0] R; wire [N:O] C;

Keyword that denotes synthesis-time operations
For-loop creates instances (with unique names)
igenerate
(i=0; i<N; i=i+1) begin:bit

$$
\text { Fuilidder add }(a(A \bar{A}], . b(B[i]), ~ c i(C[i]), . c o(C[i+1]), . r(R[i])) ;
$$

end endgenerate

$$
\text { assign } C[0]=1 \text { 'bo; }
$$

$$
\text { assign } R[N]=C[N] ;
$$

endmodule

EECS151 Registers

All registers are " N " bits wide - the value of N is specified at instantiation

- All positive edge triggered.


```
module REGISTER(q, d, clk);
        parameter N = 1;
    module REGISTER_CE(q, d, ce, clk);
    parameter N = 1;
```

On the rising clock edge if clock enable (ce) is 0 then the register is disabled (it's state will not be changed).
module REGISTER_R(q, d, rst, clk);

```
    parameter N = 1;
```

 parameter INIT = 1b'O;
 On the rising clock edge if reset (rst) is 1 then the state is set to the value of INIT. Default INIT value is all 0's.

module REGISTER_R_CE(q, d, rst, ce, clk); parameter $N=1 ;$ parameter INIT = 1b'O;
Reset (rst) has priority over clock enable (ce).

4-bit wrap-around counter

$0,1,2,3,4,5,6,7,8,9,10$, $11,12,13,14,15,0,1, \ldots$

module counter(value, enable, reset, clk);
output [3:0] value;
input enable, reset, clk;
wire [3:0] next;
REGISTER_R \#(4) state (.q(value), .d(next), .rst(reset), . assign next = value + 1;
endmodule // counter

FPGA Overview

- Basic idea: two-dimensional array of logic blocks and flip-flops with a means for the user to configure (program):

1. the interconnection between the logic blocks,
2. the function of each block.

Simplified version of FPGA internal architecture

User Programmability

- Latch-based [Xilinx, Intel/Altera, ...]

- Latches are used to:

1. control a switch to make or break cross-point connections in the interconnect
2. define the function of the logic blocks
3. set user options:

- within the logic blocks
- in the input/output blocks
- global reset/clock
- "Configuration bit stream" is loaded under user control

4-LUT Implementation

Example Partition, Placement, and Route

Two partitions. Each has single output, no more than 4 inputs, and no more than 1 flip-flop. In this case, inverter goes in both partitions.

Note: the partition can be arbitrarily large as long as it has not more than 4 inputs and 1 output, and no more than 1 flip-flop.

Some Laws of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and 0s and 1s (literals are left unchanged).

$$
\left\{F\left(x_{1}, x_{2}, \ldots, x_{n}, 0,1,+, \bullet\right)\right\}^{D}=\left\{F\left(x_{1}, x_{2}, \ldots, x_{n}, 1,0, \bullet,+\right)\right\}
$$

Any law that is true for an expression is also true for its dual.
Operations with 0 and 1:

$$
\begin{array}{ll}
x+0=x & x * 1=x \\
x+1=1 & x * 0=0
\end{array}
$$

Idempotent Law:

$$
x+x=x \quad x \quad x=x
$$

Involution Law:

$$
\left[x^{\prime}\right]^{\prime}=x
$$

Laws of Complementarity:

$$
x+x^{\prime}=1 \quad x x^{\prime}=0
$$

Commutative Law:

$$
x+y=y+x \quad x \quad y=y x
$$

Algebraic Simplification

$$
\begin{aligned}
\text { Cout } & =a^{\prime} b c+a b b^{\prime} c+a b c^{\prime}+a b c \\
& =a^{\prime} b c+a b \prime c+a b c^{\prime}+a b c+a b c \\
& =a a^{\prime} b c+a b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =\left[a^{\prime}+a\right] b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =[1] b c+a b b^{\prime} c+a b c^{\prime}+a b c \\
& =b c+a b b^{\prime} c+a b c^{\prime}+a b c+a b c \\
& =b c+a b b^{\prime} c+a b c+a b c^{\prime}+a b c \\
& =b c+a\left[b^{\prime}+b\right] c+a b c^{\prime}+a b c \\
& =b c+a[1] c+a b c^{\prime}+a b c \\
& =b c+a c+a b\left[c^{\prime}+c\right] \\
& =b c+a c+a b[1] \\
& =b c+a c+a b
\end{aligned}
$$

Canonical Forms

- Standard form for a Boolean expression - unique algebraic expression directly from a true table (TT) description.
- Two Types:
* Sum of Products [SOP]
* Product of Sums (POS)
- Sum of Products (disjunctive normal form, minterm expansion). Example:

Minterms	a	b	c	f	f

One product [and] term for each 1 in f: $f=a b^{\prime} b c+a b ' c '+a b ' c+a b c '+a b c$ $f^{\prime}=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a ' b c '$

What is the cost?

Karnaugh Map Method

- Adjacent groups of 1's represent product terms

Multi-level Combinational Logic

Another Example: $\mathrm{F}=\mathrm{abc}+\mathrm{abd}+\mathrm{a} \mathrm{c}^{\prime} \mathrm{d}^{\prime}+\mathrm{b} \mathrm{b}^{\prime} \mathrm{d}^{\prime}$

$$
\text { let } x=a b \quad y=c+d
$$

$$
f=x y+x^{\prime} y^{\prime}
$$

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

NAND-NAND \& NOR-NOR Networks

- Mapping from AND/OR to NAND/NAND

Finite State Machines (FSMs)

\square FSM circuits are a type of sequential circuit:

- output depends on present and past inputs
- effect of past inputs is represented by the current state
- Behavior is represented by State Transition Diagram:
- traverse one edge per clock cycle.

Formal Design Process $(3,4)$

State Transition Table:

present state	OUT	IN	next state
EVEN	0	0	EVEN
EVEN	0	1	ODD
ODD	1	0	ODD
ODD	1	1	EVEN

Invent a code to represent states:
Let $0=$ EVEN state, $1=$ ODD state

present state (ps)	OUT	IN	next state (ns)
0	0	0	0
0	0	1	1
1	1	0	1
1	1	1	0

Derive logic equations from table (how?):
$O U T=P S$
$N S=P S$ xor $I N$

FSM CL block rewritten

```
always @*
begin
```

* for sensitivity list
next_state = IDLE;
out = 1'bo;

Normal values: used unless specified below.
 case (state)
IDLE : if (in == 1'b1) next_state = SO;
SO : if (in == 1'b1) next_state = S1;
s1 : begin
out = 1'b1;

Within case only need to specify exceptions to the normal values.
default:
endcase end
Endmodule

Note: The use of "blocking assignments" allow signal values to be "rewritten", simplifying the specification.

FSM Recap

Moore Machine

Mealy Machine

input value/output values

Both machine types allow one-hot implementations.

One-hot encoded combination lock

Final product ...

Top-down view:

"The planar process"

Jean Hoerni, Fairchild Semiconductor 1958

Physical Layout

- How do transistor circuits get "laid out" as geometry?
-What circuit does a physical layout implement?
- Where are the transistors and wires and contacts and vias?

Complex CMOS Gate

OUT $=\overline{D+A \cdot(B+C)}$
OUT $=\overline{D \cdot A+B \cdot C}$

4-to-1 Transmission-gate Mux

- The series connection of passtransistors in each branch effectively forms the AND of $s 1$ and s 0 (or their complement).
- Compare cost to logic gate implementation

Any better solutions?

Tri-state Buffers

Latches and Flip-flops

Positive Level-sensitive latch: CLK

Positive Edge-triggered flip-flop

 built from two level-sensitive latches:

Latch Implementation:

Example


```
Parallel to serial converter circuit
\[
\overrightarrow{\text { clk } \rightarrow \mathrm{Q}}|\overrightarrow{\operatorname{mux}}|
\]
```


Gate Delay Summary

The y-intercepts (intrinsic delay) for NAND and NOR are both twice that of the inverter. The NAND line has a gradient 4/3 that of the inverter (steeper); for NOR it is $5 / 3$ (steepest).

$$
\begin{array}{lc}
t_{p 0}\left(2+\frac{4 f}{3 \gamma}\right) & t_{p 0}\left(2+\frac{5 f}{3 \gamma}\right) \\
\text { 2-input NAND } & \text { 2-input NOR }
\end{array}
$$

What about gates with more than 2-inputs?
4-input NAND:

$$
t_{p}=t_{p 0}\left(4+\frac{2 f}{\gamma}\right)_{\text {intercept }}
$$

Wire Delav

- Even in those cases where the transmission line effect is negligible:
- Wires posses distributed resistance and capacitance

- Time constant associated with distributed RC is proportional to the square of the length
- For short wires on ICs, resistance is insignificant (relative to effective R of transistors), but C is important.
- Typically around half of C of gate load is in the wires.
- For long wires on ICs:
- busses, clock lines, global control signal, etc.
- Resistance is significant, therefore distributed RC effect dominates.
- signals are typically "rebuffered" to reduce delay:

Circles are combinational

 logic, labelled with delays.Critical path is 5. We want to improve it without changing circuit semantics.

Add a register, move one circle.
Performance improves by 20%.

Figure 1: A small graph before retiming. The nodes represent logic delays, with the inputs and outputs passing through mandatory, fixed registers. The critical path is 5.

Figure 2: The example in Figure 2 after retiming. The critical path is reduced from 5 to 4.

Logic Synthesis tools can do this in simple cases.

Gate Driving long wire and other gates

$$
\begin{aligned}
t_{p} & =0.69 R_{d r} C_{i n t}+0.69 R_{d r} C_{w}+0.38 R_{w} C_{w}+0.69 R_{d r} C_{f a n}+0.69 R_{w} C_{f a n} \\
& =0.69 R_{d r}\left(C_{i n t}+C_{f a n}\right)+0.69\left(R_{d r} c_{w}+r_{w} C_{f a n}\right) L+0.38 r_{w} c_{w} L^{2}
\end{aligned}
$$

Driving Large Loads

- Large fanout nets: clocks, resets, memory bit lines, off-chip
- Relatively small driver results in long rise time land thus large gate delay)
- Strategy:

Staged Buffers

- How to optimally scale drivers?
- Optimal trade-off between delay per stage and total number ot stages?

