
EE141

EECS 151/251A
Spring	2023	
Digital	Design	and	
Integrated	Circuits
Instructor:		
Wawrzynek

Lecture 14 - Exam1 Review

EE141

Announcements
❑ No class Thursday 3/9.
❑ Midterm Exam 6-9PM

❑ Latimer 120 (alternate seating)
❑ Exam covers Lectures 1 - 12 and HW 1 - 6
❑ One double sided handwritten sheet of

paper allowed. No calculators.
❑ Homework #6 assignment solutions posted

Monday 3/6 - part of exam 1.
❑ No homework posted Friday 3/3 nor due

Monday 3/13.
❑ No Wawrzynek office hour(s) today

2

EE141

Review with sample slides
❑ Do not study only the following slides.

These are just representative of what
you need to know.

❑ Go back and study the entire lecture.

3

EE141 4

Moore’s Law – 2x transistors per 1-2 yr

Dennard Scaling
DENN.4m et al. : ION-IMPLANTED MOSFET’S 257

*,
(1
Q.,,
tox
T
Vd, v,, v., Vaub

Vd.
V,-.”b
v,
w.,Wd

w

Built-in junction potential.
Charge on the electron.
Effective oxide charge.
Gate oxide thickness.
Absolute temperature.
Drain, source, gate and substrate volt-
ages.

Drain voltage relative to source.
Source voltage relative to substrate.
Gate threshold voltage.
Source and drain depletion layer
widths.

MOSFET channel width.

INTRODUCTION

N

EW HIGH resolution lithographic techniques for

forming semiconductor integrated circuit patterns

offer a decrease in linewidth of five to ten times

over the optical contact masking approach which is com-

monly used in the semiconductor industry today. Of the

new techniques, electron beam pattern writing has been

widely used for experimental device fabrication [1] – [4]

while X-ray lithography [5] and optical projection print-

ing [6] have also exhibited high-resolution capability.

Full realization of the benefits of these new high-resolu-

tion lithographic techniques requires the development of

new device designs, technologies, and structures which

can be optimized for very small dimensions.

This paper concerns the design, fabrication, and char-

acterization of very small MOSFET switching devices

suitable for digital integrated circuits using dimensions

of the order of 1 p. It is known that reducing the source-

to-drain spacing (i.e., the channel length) of an FET

leads to undesirable changes in the device characteristics.

These changes become significant when the depletion

regions surrounding the source and drain extend over a

large portion of the region in the silicon substrate under

the gate electrode. For switching applications, the most

undesirable “short-channel” effect is a reduction in the

gate threshold voltage at which the device turns on, which

is aggravated by high drain voltages. It has been shown

that these short-channel effects can be avoided by scaling

down the vertical dimensions (e.g., gate insulator thickn-

ess, junction depth, etc.) along with the horizontal

dimensions, while also proportionately decreasing the

applied voltages and increasing the substrate doping con-
centration [7], [8]. Applying this scaling approach to a
properly designed conventional-size MOSFET shows that
a 200-A gate insulator is required if the channel length
is to be reduced to 1 ~.
A major consideration of this paper is to show how

the use of ion implantation leads to an improved design
for very small scaled-down MOSFET’S. First, the ability
of ion implantation to accurately introduce a low con-
centration of doping atoms allows the substrate doping
profile in the channel region under the gate to be in-
creased in a controlled manner. When combined with a

GATE ~ tox=loooh

a

1,
‘+ /l ‘+

L’l -

/L\--0
5P =. _-

NA=5 x 10’5/cm3

(a)

GATE &*200A

a

:N+ ~N+o___, .___,

-OILhp

N~=25x10’6/cm

(b)

Fig. 1. Illustration of device scaling principles with K = 5. (a)
Conventional commercially available device structure. (b)
Scaled-down device structure.

relatively lightly doped starting substrate, this channel
implant reduces the sensitivity of the threshold voltage
to changes in the source-to-substrate (“backdate”) bias.
This reduced “substrate sensitivity” can then be traded
off for a thicker gate insulator of 350-A thickness which
tends to be easier to fabricate reproducibly and reliably.
Second, ion implantation allows the formation of very
shallow source and drain regions which are more favor-
able with respect to short-channel effects, while main-
taining an acceptable sheet resistance. The combination
of these features in an all-implanted design gives a
switching device which can be fabricated with a thicker
gate insulator if desired, which has well-controlled thresh-
old characteristics, and which has significantly reduced
interelectrode capacitances (e.g., drain-to-gate or drain-
to-substrate capacitances).
This paper begins by describing the scaling principles

which are applied to a conventional MOSFET to obtain
a very small device structure capable of improved per-
formance. Experimental verification of the scaling ap-
proach is then presented. Next, the fabrication process
for an improved scaled-down device structure using ion
implantation is described. Design considerations for this
all-implanted structure are based on two analytical tools:
a simple one-dimensional model that predicts the sub-
strate sensitivity for long channel-length devices, and a
two-dimensional current-transport model that predicts
the device turn-on characteristics as a function of chan-
nel length, The predicted results from both analyses are
compared ;vith experimental data. Using the two-di-
mensional simulation, the sensitivity of the design to
Yarious parameters is shown. Then, detailed attention is
givcll to all alternate design,intendedfor zero substrate

bins, which offers some advantages with respect to thresh-
old control. Finally, the paper concludes with a discus-
sion of the performance improvements to be expected
from integrated circuits that use these very small FET’s.

DEVICE SCALING

The principles of device scaling [7], [8] show in a

concise manner the general design trends to be followed

in dccreming the size and increasing the performance of

lIOSFET switching devices. Fig. 1 compares a state-of-

the-art n-channel lllOSFET [9] with a scaled-down

not

scaled

𝞳 = 5

scaling

DENNASDet at.: 10N-1MH,.4NTEDiWOSFET’S 265
,.-5 , ,

20KeV,6EII cm-z
]o-6 . V,=4V /

v$,~=o

/

.
,0-7

W%~~ENTAL . +

,0-8

“ A

L=l.lp . L=lOp
~
& 10-9

.

,0-10 ~.li)o(*) .

; ,[CTvj
o 0.2 0.4 0.6 .0.8 1.0 1.2 1.4

vg [v]

Fig. 13. Calculated and experimental subthreshold turn-on char-
acteristics for ion-implanted zero substrate bias design.

TABLE I

SCALING RESULTS FOR CIRCUIT PERFORMANCE

Device or Circuit Parameter Scaling Factor

Device dlmensiontO., L, W’
Doping concentration Na
Voltage V
Current 1
Capacitance EA It
Delay time/circuit VC/Z
Power dissipation/circnit VI
Power density VI/A

1/.
K

1/.
1/.
l/K

1/.
1/K2
1

ing factor K. Justifying these results here in great detail
would be tedious, so only a. simplified treatment is given.
It is argued that all nodal voltages are reduced in the
miniaturized circuits in proportion to the reduced supply
voltages. This follows because the quiescent voltage levels
in digital MC)SFET circuits are either the supply levels
or some intermediate level given by a voltage divider
consisting of two or more devices, and because the resist-
ance V/I of each device is unchanged by scaling. An
assumption is made that parasitic resistance elements are
either negligible or unchanged by scaling, which will be
examined subsequently. The circuits operate properly at
lower voltages because the device threshold voltage Vt
scales as shown in (2), and furthermore because the
tolerance spreads on Vt should be proportionately reduced
as well if each parameter in (2) is controlled to the same
percentage accuracy. Noise margins are reduced, but at
the same time internally generated noise coupling volt-
ages are reduced by the lower signal voltage swings,
Due to the reduction in dimensions, all circuit elements

(i.e., interconnection lines as well as devices) will have
their capacitances reduced by a factor of K. This occurs
because of the reduction by K’ in the area of these com-
ponents, which is partially cancelled by the decrease in
the electrode spacing by K due to thinner insulating films

TABLE II
SCALING RESULTS FOR INTERCONNECTION LINES

Parameter Scaling Factor

Line resistance, R~ = pL/Wt K

Normalized voltage drop IR~/V K

Line response time R~C 1
Line current density I/A K

and reduced depletion layer widths. These reduced ca-
pacitances are driven by the unchanged device resist-
ances V/I giving decreased transition times with a re-
sultant reduction in the delay time of each circuit by a
factor of K. The power dissipation of each circuit is re-
duced by K’ due to the reduced voltage and current levels,
so the power-delay product is improved by K8. Since the
area of a given device or circuit is also reduced by K2,
the power density remains constant, Thus, even if many
more circuits are placed on a given integrated circuit
chip, the cooling problem is essentially unchanged.
As indicated in Table II, a number of problems arise

from the fact that the cross-sectional area of conductors
is decreased by K2 while the length is decreased only by K.

It is assumed here that the thicknesses of the conductors
are necessarily reduced along with the widths because
of the more stringent resolution requirements (e.g.j on
etching, etc.). The conductivity is considered to remain
constant which is reasonable for metal films down to
very small dimensions (until the mean free path becomes
comparable to the thickness), and is also reasonable for
degenerately doped semiconducting lines where solid
volubility and impurity scattering considerations limit
any increase in conductivity. Under these assumptions
the resistance of a given line increases directly with the
scaling factor K. The IR drop in such a line is therefore
constant (with the decreased current levels) ~ but is K
times greater in comparison to the lower operating volt-
ages. The response time of an unterminated transmission
line is characteristically limited by its time constant
R~C, which is unchanged by scaling; however, this makes
it difficult to take advantage of the higher switching
speeds inherent in the scaled-down devices when signaI
propagation over long lines is involved, Also, the current
density in a scaled-down conductor is increased by K,

which causes a reliability concern, In conventional
MOSFET circuits, these conductivity problems are re-
latively minor, but they become significant for line-
widths of micron dimensions. The problems may be
circumvented in high performance circuits by widening
the power buses and by avoiding the use of n+ doped
lines for signal propagation.

Use of the ion-implanted devices considered in this
paper will give similar performance improvement to that
of the scaled-down device with K = 5 given in Table I.
For the implanted dcviccs with the higher operating volt-
ages (4 V instead of 3 V) and higher threshold voltages
(0.9 V instead of 0.4 V), the current level will be reduced

Things we do: scale
dimensions, doping,
Vdd.

What we get:

𝞳2 as many transistors
at the same power
density!

Whose gates switch 𝞳
times faster!

Power density scaling ended in 2003

(Pentium 4: 3.2GHz, 82W, 55M FETs).

EE141 6

Design Space & Optimality

Performance

Cost
low-performance at low-cost

high-performance at high-cost

“Pareto Optimal” Frontier

(# of components)

(tasks/sec)

EECS151 L02 DESIGN

Cost

• Non-recurring engineering
(NRE) costs

• Cost to develop a design
(product)

• Amortized over all units shipped
• E.g. $20M in development adds

$.20 to  
 each of 100M units

• Recurring costs
• Cost to manufacture, test and

package a unit
• Processed wafer cost is ~10k

(around 16nm node) which
yields:

• 50-100 large FPGAs or GPUs
• 200 laptop CPUs
• >1000 cell phone SoCs

7

EE141
8

Relationship Among Representations
* Theorem: Any Boolean function that can be expressed as a truth table can be

written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?

EE141
9

Inverter Example of Restoration

❑ Inverter acts like a “non-linear” amplifier
❑ The non-linearity is critical to restoration
❑ Other logic gates act similarly with respect to input/output

relationship.

Example (look at 1-input gate, to keep it simple):

Idealize Inverter Actual Inverter

VIN VOUT

EE141
10

Register Transfer Level Abstraction (RTL)
Any synchronous digital circuit can be represented with:

• Combinational Logic Blocks (CL), plus
• State Elements (registers or memories)

• State elements are
mixed in with CL
blocks to control
the flow of data.

Register file
or

Memory Block

Address
Input Data

Output Data
Write Control

clock

• Sometimes used in
large groups by
themselves for
“long-term” data
storage.

EE141
11

Implementation Alternative Summary

What are the important metrics of comparison?

Full-custom: All circuits/transistors layouts optimized for
application.

Standard-cell: Small function blocks/“cells” (gates, FFs)
automatically placed and routed.

Gate-array
(structured ASIC):

Partially prefabricated wafers with arrays of
transistors customized with metal layers or vias.

FPGA: Prefabricated chips customized with loadable latches
or fuses.

Microprocessor: Instruction set interpreter customized through
software.

Domain Specific
Processor: Special instruction set interpreters (ex: DSP, NP, GPU).

These days, “ASIC” almost always means Standard-cell.

EE141
12

FPGA versus ASIC

• ASIC: Higher NRE costs (10’s of $M). Relatively Low cost per
die (10’s of $ or less).

• FPGAs: Low NRE costs. Relatively low silicon efficiency ⇒
high cost per part (> 10’s of $ to 1000’s of $).

• Cross-over volume from cost effective FPGA design to ASIC
was often in the 100K range.

volume

total
cost

FPGAs cost
effective

ASICs cost
effective

FPGA

ASIC

EE141

Hardware Description Languages
• Basic Idea:

– Language constructs describe circuits with
two basic forms:

▪ Structural descriptions: connections of
components. Nearly one-to-one
correspondence to with schematic diagram.

▪ Behavioral descriptions: use high-level
constructs (similar to conventional
programming) to describe the circuit
function.

• Originally invented for simulation.
– “logic synthesis” tools exist to

automatically convert to gate level
representation.

– High-level constructs greatly improves
designer productivity.

– However, this may lead you to falsely
believe that hardware design can be
reduced to writing programs*

“Structural” example:
Decoder(output x0,x1,x2,x3;
 inputs a,b)
 {
 wire abar, bbar;
 inv(bbar, b);
 inv(abar, a);
 and(x0, abar, bbar);
 and(x1, abar, b);
 and(x2, a, bbar);
 and(x3, a, b);
 }

“Behavioral” example:
Decoder(output x0,x1,x2,x3;
 inputs a,b)
 {
 case [a b]
 00: [x0 x1 x2 x3] = 0x8;
 01: [x0 x1 x2 x3] = 0x4;
 10: [x0 x1 x2 x3] = 0x2;
 11: [x0 x1 x2 x3] = 0x1;
 endcase;
 }

Warning: this is a fake HDL!

*Describing hardware with a language is similar, however, to writing a parallel program.
13

EE141

Review - Ripple Adder Example
module FullAdder(a, b, ci, r, co);
 input a, b, ci;
 output r, co;

 assign r = a ^ b ^ ci;
 assign co = a&ci + a&b + b&cin;

endmodule

module Adder(A, B, R);
 input [3:0] A;
 input [3:0] B;
 output [4:0] R;

 wire c1, c2, c3;
 FullAdder
 add0(.a(A[0]), .b(B[0]), .ci(1’b0), .co(c1), .r(R[0])),
 add1(.a(A[1]), .b(B[1]), .ci(c1), .co(c2), .r(R[1])),
 add2(.a(A[2]), .b(B[2]), .ci(c2), .co(c3), .r(R[2])),
 add3(.a(A[3]), .b(B[3]), .ci(c3), .co(R[4]), .r(R[3]));
endmodule

14

EE141

Example - Ripple Adder Generator

module Adder(A, B, R);
 parameter N = 4;
 input [N-1:0] A;
 input [N-1:0] B;
 output [N:0] R;
 wire [N:0] C;

 genvar i;

 generate
 for (i=0; i<N; i=i+1) begin:bit
 FullAdder add(.a(A[i], .b(B[i]), .ci(C[i]), .co(C[i+1]), .r(R[i]));

end
 endgenerate

 assign C[0] = 1’b0;
 assign R[N] = C[N];
endmodule

Parameters give us a way to generalize our designs. A module becomes a “generator”
for different variations. Enables design/module reuse. Can simplify testing.

variable exists only in the specification - not in the final circuit.

Keyword that denotes synthesis-time operations

Declare a parameter with default value.
Note: this is not a port. Acts like a “synthesis-time” constant.

For-loop creates instances (with unique names)

Adder adder4 (...);

Adder #(.N(64))
adder64 (...);

Overwrite parameter
N at instantiation.

Replace all occurrences of “4” with “N”.

15

EE141

EECS151 Registers
❑ All registers are “N” bits wide - the value of N is specified at instantiation
❑ All positive edge triggered.

16

d qclk

On the rising clock edge if clock enable (ce) is 0 then the register is
disabled (it’s state will not be changed).

module REGISTER_CE(q, d, ce, clk);
parameter N = 1;

module REGISTER(q, d, clk);
parameter N = 1;

d qclk
ce

d q
rclk rst

d q
rclk
ce

rst

module REGISTER_R(q, d, rst, clk);
parameter N = 1;
parameter INIT = 1b’0;

On the rising clock edge if reset (rst) is 1 then the state is set to the value
of INIT. Default INIT value is all 0’s.

module REGISTER_R_CE(q, d, rst, ce, clk);
parameter N = 1;
parameter INIT = 1b’0;

Reset (rst) has priority over clock enable (ce).

EE141

4-bit wrap-around counter

17

+1
4

value

clk

enablereset

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 0, 1, …

EE141
18

FPGA Overview
❑ Basic idea: two-dimensional array of logic blocks and flip-flops with a

means for the user to configure (program):
 1. the interconnection between the logic blocks,
 2. the function of each block.

Simplified version of FPGA internal architecture

EE141
19

User Programmability
❑ Latches are used to:

1. control a switch to make or
break cross-point
connections in the
interconnect

2. define the function of the
logic blocks

3. set user options:
– within the logic blocks
– in the input/output blocks
– global reset/clock

❑ “Configuration bit stream”
is loaded under user
control

• Latch-based (Xilinx, Intel/Altera, …)

+ reconfigurable

– volatile

– relatively large.

MOSFET used
as a “switch”

EE141
20

4-LUT Implementation
❑ n-bit LUT is implemented as a 2n x 1

memory:
▪ inputs choose one of 2n memory

locations.
▪ memory locations (latches) are

normally loaded with values from
user’s configuration bit stream.

▪ Inputs to mux control are the CLB
inputs.

❑ Result is a general purpose “logic
gate”.
▪ n-LUT can implement any function of

n inputs!

LUT

LUT

EE141
21

Example Partition, Placement, and Route
❑ Example Circuit:

▪ collection of gates and flip-flops

Two partitions. Each has single output, no more than 4 inputs, and
no more than 1 flip-flop. In this case, inverter goes in both partitions.

Note: the partition can be arbitrarily large as long as it has not more
than 4 inputs and 1 output, and no more than 1 flip-flop.

A

A

B

B

INOUT

EE141
22

Some Laws of Boolean Algebra
Duality: A dual of a Boolean expression is derived by interchanging OR and

AND operations, and 0s and 1s (literals are left unchanged).

Any law that is true for an expression is also true for its dual.

Operations with 0 and 1:
 x + 0 = x x * 1 = x
 x + 1 = 1 x * 0 = 0
Idempotent Law:
 x + x = x x x = x
Involution Law:
 (x’)’ = x
Laws of Complementarity:
 x + x’ = 1 x x’ = 0
Commutative Law:
 x + y = y + x x y = y x

EE141
23

Algebraic Simplification
Cout = a’bc + ab’c + abc’ + abc
 = a’bc + ab’c + abc’ + abc + abc
 = a’bc + abc + ab’c + abc’ + abc
 = (a’ + a)bc + ab’c + abc’ + abc
 = (1)bc + ab’c + abc’ + abc
 = bc + ab’c + abc’ + abc + abc
 = bc + ab’c + abc + abc’ + abc
 = bc + a(b’ +b)c + abc’ +abc
 = bc + a(1)c + abc’ + abc
 = bc + ac + ab(c’ + c)
 = bc + ac + ab(1)
 = bc + ac + ab

EE141
24

Canonical Forms
❑ Standard form for a Boolean expression - unique algebraic expression

directly from a true table (TT) description.
❑ Two Types:

* Sum of Products (SOP)
* Product of Sums (POS)

• Sum of Products (disjunctive normal form, minterm expansion). Example:

Minterms a b c f f'
a'b'c' 0 0 0 0 1
a'b'c' 0 0 1 0 1
a'bc' 0 1 0 0 1
a'bc 0 1 1 1 0
ab'c' 1 0 0 1 0
ab'c 1 0 1 1 0
abc' 1 1 0 1 0
abc 1 1 1 1 0

One product (and) term for each 1 in f:
 f = a'bc + ab'c' + ab'c + abc' + abc
 f' = a'b'c' + a'b'c + a'bc'

What is the cost?

EE141
25

Karnaugh Map Method
❑ Adjacent groups of 1’s represent product terms

EE141
26

Multi-level Combinational Logic
Another Example: F = abc + abd +a'c'd' + b'c'd'
 let x = ab y = c+d
 f = xy + x'y'

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

Incorporates fanout.

EE141
27

NAND-NAND & NOR-NOR Networks
❑ Mapping from AND/OR to NAND/NAND

EE141

Finite State Machines (FSMs)
❑ FSM circuits are a type of

sequential circuit:
▪ output depends on present

and past inputs
– effect of past inputs is

represented by the current state

❑ Behavior is represented by
State Transition Diagram:
▪ traverse one edge per clock

cycle.
28

EE141

Formal Design Process (3,4)
State Transition Table:

Invent a code to represent states:
Let 0 = EVEN state, 1 = ODD state

present next
state OUT IN state

 EVEN 0 0 EVEN
 EVEN 0 1 ODD
 ODD 1 0 ODD
 ODD 1 1 EVEN

present state (ps) OUT IN next state (ns)
 0 0 0 0
 0 0 1 1
 1 1 0 1
 1 1 1 0

Derive logic equations from
table (how?):

OUT = PS
NS = PS xor IN

29

EE141

FSM CL block rewritten

always @*
 begin
 next_state = IDLE;
 out = 1’b0;
 case (state)
 IDLE : if (in == 1’b1) next_state = S0;
 S0 : if (in == 1’b1) next_state = S1;
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 end
 default: ;
 endcase
 end
Endmodule

* for sensitivity list

Normal values: used unless
specified below.

Within case only need to
specify exceptions to the

normal values.

Note: The use of “blocking assignments” allow signal
values to be “rewritten”, simplifying the specification.

EE141

FSM Recap
Moore Machine Mealy Machine

Both machine types allow one-hot implementations.

31

EE141

One-hot encoded combination lock

32

Final product ...

Top-down view:

p-

oxide
n+ n+

Vd Vs “The planar
process”

Jean Hoerni,
Fairchild

Semiconductor
1958

Physical Layout

‣ How do transistor circuits get “laid out” as geometry?
‣ What circuit does a physical layout implement?
‣ Where are the transistors and wires and contacts and

vias?

34

EE141

Complex CMOS Gate

D
A

B C

D

A
B

C

OUT = D + A • (B + C) OUT = D • A + B • C

35

OUT

EE141
36

4-to-1 Transmission-gate Mux
❑ The series connection of pass-

transistors in each branch
effectively forms the AND of s1
and s0 (or their complement).

❑ Compare cost to logic gate
implementation

Any better solutions?

EE141
37

transmission gate
useful in
implementation

Tri-state Buffers

“high
impedance” (output
disconnected)

Tri-state Buffer:

Inverting buffer Inverted enable

Variations:

EE141

Latches and Flip-flops
Positive Level-sensitive latch:

Latch Transistor Level:Positive Edge-triggered flip-flop
built from two level-sensitive
latches:

38

clk’

clk

clk

clk’

Latch Implementation:

Spring 2019 EECS151 Page

Example

Parallel to serial
converter circuit

T ≥ time(clk→Q) + time(mux) + time(setup)

T ≥ τclk→Q + τmux + τsetupa

b

clk

39

EE141

Gate Delay Summary

40

inverter

2-NAND
2-NOR

tp

f

The y-intercepts (intrinsic delay) for
NAND and NOR are both twice that of
the inverter. The NAND line has a
gradient 4/3 that of the inverter
(steeper); for NOR it is 5/3 (steepest).

What about gates with more than 2-inputs?

4-input NAND:

intercept
slope

2-input NAND 2-input NOR

Spring 2018 EECS151 Page

Wire Delay
• Even in those cases where the

transmission line effect is
negligible:

– Wires posses distributed
resistance and capacitance

– Time constant associated with
distributed RC is proportional
to the square of the length

• For short wires on ICs,
resistance is insignificant
(relative to effective R of
transistors), but C is important.
– Typically around half of C of

gate load is in the wires.
• For long wires on ICs:

– busses, clock lines, global
control signal, etc.

– Resistance is significant,
therefore distributed RC effect
dominates.

– signals are typically “rebuffered”
to reduce delay:

v1 v2 v3 v4

41

v1

v4
v3

v2

time

Post-Placement C-slow Retiming for the Xilinx Virtex
FPGA

Nicholas Weaver
⇤

UC Berkeley
Berkeley, CA

Yury Markovskiy
UC Berkeley
Berkeley, CA

Yatish Patel
UC Berkeley
Berkeley, CA

John Wawrzynek
UC Berkeley
Berkeley, CA

ABSTRACT

C-slow retiming is a process of automatically increas-
ing the throughput of a design by enabling fine grained
pipelining of problems with feedback loops. This transfor-
mation is especially appropriate when applied to FPGA
designs because of the large number of available registers.
To demonstrate and evaluate the benefits of C-slow re-
timing, we constructed an automatic tool which modifies
designs targeting the Xilinx Virtex family of FPGAs. Ap-
plying our tool to three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1
synthesized microprocessor core, we were able to substan-
tially increase the total throughput. For some parameters,
throughput is e↵ectively doubled.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids—Automatic syn-

thesys

General Terms

Performance

Keywords

FPGA CAD, FPGA Optimization, Retiming, C-slow
Retiming

⇤Please address any correspondance to
nweaver@cs.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03, February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

1. Introduction

Leiserson’s retiming algorithm[7] o↵ers a polynomial
time algorithm to optimize the clock period on arbitrary
synchronous circuits without changing circuit semantics.
Although a powerful and e�cient transformation that has
been employed in experimental tools[10][2] and commercial
synthesis tools[13][14], it o↵ers only a minor clock period
improvement for a well constructed design, as many de-
signs have their critical path on a single cycle feedback
loop and can’t benefit from retiming.

Also proposed by Leiserson et al to meet the constraints
of systolic computation, is C-slow retiming.1 In C-slow re-
timing, each design register is first replaced with C regis-
ters before retiming. This transformation modifies the de-
sign semantics so that C separate streams of computation
are distributed through the pipeline, greatly increasing the
aggregate throughput at the cost of additional latency and
flip flops. This can automatically accelerate computations
containing feedback loops by adding more flip-flops that
retiming can then move moved around the critical path.

The e↵ect of C-slow retiming is to enable pipelining of
the critical path, even in the presence of feedback loops. To
take advantage of this increased throughput however, there
needs to be su�cient task level parallelism. This process
will slow any single task but the aggregate throughput will
be increased by interleaving the resulting computation.

This process works very well on many FPGA archite-
cures as these architectures tend to have a balanced ra-
tio of logic elements to registers, while most user designs
contain a considerably higher percentage of logic. Addi-
tionaly, many architectures allow the registers to be used
independently of the logic in a logic block.

We have constructed a prototype C-slow retiming tool
that modifies designs targeting the Xilinx Virtex family
of FPGAs. The tool operates after placement: converting
every design register to C separate registers before apply-
ing Leiserson’s retiming algorithm to minimize the clock
period. New registers are allocated by scavenging unused
array resources. The resulting design is then returned to
Xilinx tools for routing, timing analysis, and bitfile gener-
ation.

We have selected three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1

1This was originally defined to meet systolic slowdown re-
quirements.

How to retime logic

Post-Placement C-slow Retiming for the Xilinx Virtex
FPGA

Nicholas Weaver
⇤

UC Berkeley
Berkeley, CA

Yury Markovskiy
UC Berkeley
Berkeley, CA

Yatish Patel
UC Berkeley
Berkeley, CA

John Wawrzynek
UC Berkeley
Berkeley, CA

ABSTRACT

C-slow retiming is a process of automatically increas-
ing the throughput of a design by enabling fine grained
pipelining of problems with feedback loops. This transfor-
mation is especially appropriate when applied to FPGA
designs because of the large number of available registers.
To demonstrate and evaluate the benefits of C-slow re-
timing, we constructed an automatic tool which modifies
designs targeting the Xilinx Virtex family of FPGAs. Ap-
plying our tool to three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1
synthesized microprocessor core, we were able to substan-
tially increase the total throughput. For some parameters,
throughput is e↵ectively doubled.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids—Automatic syn-

thesys

General Terms

Performance

Keywords

FPGA CAD, FPGA Optimization, Retiming, C-slow
Retiming

⇤Please address any correspondance to
nweaver@cs.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03, February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

1. Introduction

Leiserson’s retiming algorithm[7] o↵ers a polynomial
time algorithm to optimize the clock period on arbitrary
synchronous circuits without changing circuit semantics.
Although a powerful and e�cient transformation that has
been employed in experimental tools[10][2] and commercial
synthesis tools[13][14], it o↵ers only a minor clock period
improvement for a well constructed design, as many de-
signs have their critical path on a single cycle feedback
loop and can’t benefit from retiming.

Also proposed by Leiserson et al to meet the constraints
of systolic computation, is C-slow retiming.1 In C-slow re-
timing, each design register is first replaced with C regis-
ters before retiming. This transformation modifies the de-
sign semantics so that C separate streams of computation
are distributed through the pipeline, greatly increasing the
aggregate throughput at the cost of additional latency and
flip flops. This can automatically accelerate computations
containing feedback loops by adding more flip-flops that
retiming can then move moved around the critical path.

The e↵ect of C-slow retiming is to enable pipelining of
the critical path, even in the presence of feedback loops. To
take advantage of this increased throughput however, there
needs to be su�cient task level parallelism. This process
will slow any single task but the aggregate throughput will
be increased by interleaving the resulting computation.

This process works very well on many FPGA archite-
cures as these architectures tend to have a balanced ra-
tio of logic elements to registers, while most user designs
contain a considerably higher percentage of logic. Addi-
tionaly, many architectures allow the registers to be used
independently of the logic in a logic block.

We have constructed a prototype C-slow retiming tool
that modifies designs targeting the Xilinx Virtex family
of FPGAs. The tool operates after placement: converting
every design register to C separate registers before apply-
ing Leiserson’s retiming algorithm to minimize the clock
period. New registers are allocated by scavenging unused
array resources. The resulting design is then returned to
Xilinx tools for routing, timing analysis, and bitfile gener-
ation.

We have selected three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1

1This was originally defined to meet systolic slowdown re-
quirements.

IN OUT

1 1

1 1 22

Figure 1: A small graph before retiming. The

nodes represent logic delays, with the inputs and

outputs passing through mandatory, fixed regis-

ters. The critical path is 5.

microprocessor core, for which we can envision scenar-
ios where ample task-level parallelism exists. The AES
and Smith/Watherman benchmarks were also C-slowed by
hand, enabling us to evaluate how well our automated tech-
niques compare with careful, hand designed implementa-
tions that accomplishes the same goals.

The LEON 1 processor is a significantly larger synthe-
sized design. Although it seems unusual, there is su�cient
task level parallelism to C-slow a microprocessor, as each
stream of execution can be viewed as a separate task. The
resulting C-slowed design behaves like a multithreaded sys-
tem, with each virtual processor running slower but o↵er-
ing a higher total throughput.

This prototype demonstrates significant speedups on
all 3 benchmarks, nearly doubling the throughput for the
proper parameters. On the AES and Smith/Waterman
benchmarks, these automated results compare favorably
with careful hand-constructed implementations that were
the result of manual C-slowing and pipelining.

In the remainder of the paper, we first discuss the se-
mantic restrictions and changes that retiming and C-slow
retiming impose on a design, the details of the retiming
algorithm, and the use of the target architecture. Fol-
lowing the discussion of C-slow retiming, we describe our
implementation of an automatic retiming tool. Then we
describe the structure of all three benchmarks and present
the results of applying our tool.

2. Conventional Retiming

Leiserson’s retiming treats a synchronous circuit as a
directed graph, with delays on the nodes representing com-
bination delays and weights on the edges representing reg-
isters in the design. An additional node represents the
external world, with appropriate edges added to account
for all the I/Os. Two matrixes are calculated, W and D,
that represent the number of registers and critical path
between every pair of nodes in the graph. Each node also
has a lag value r that is calculated by the algorithm and
used to change the number of registers on any given edge.
Conventional retiming does not change the design seman-
tics: all input and output timings remain unchanged, while
imposing minor design constraints on the use of FPGA fea-
tures. More details and formal proofs of correctness can
be found in Leiserson’s original paper[7].

In order to determine whether a critical path P can be
achieved, the retiming algorithm creates a series of con-

IN OUT

1 1

1 1 22

Figure 2: The example in Figure 2 after retiming.

The critical path is reduced from 5 to 4.

straints to calculate the lag on each node. All these con-
strains are of the form x � y  k that can be solved in
O(n2) time by using the Bellman/Ford shortest path al-
gorithm. The primary constraints insure correctness: no
edge will have a negative number of registers while every
cycle will always contain the original number of registers.
All IO passes through an intermediate node insuring that
input and output timings do not change. These constraints
can be modified to insure that a particular line will contain
no registers or a mandatory minimum number of registers
to meet architectural constraints.

A second set of constraints attempt to insure that every
path longer than the critical path will contain at least one
register, by creating an additional constraint for every path
longer than the critical path. The actual constraints are
summarized in Table 1.

This process is iterated to find the minimum critical
path that meets all the constraints. The lag calculated by
these constraints can then be used to change the design
to meet this critical path. For each edge, a new register
weight w

0 is calculated, with w
0(e) = w(e)� r(u) + r(v).

An example of how retiming a↵ects a simple design can
be seen in Figures 2 and 2. The initial design has a critical
path of 5, while after retiming the critical path is reduced
to 4. During this process, the number of registers is in-
creased, yet the number of registers on every cycle and
the path from input to output remain unchanged. Since
the feedback loop has only a single register and a delay of
4, it is impossible to further improve the performance by
retiming.

Retiming in this form imposes only minimal design lim-
itations: there can be no asynchronous resets or similar
elements, as the retiming technique only applies to syn-
chronous circuits. A synchronous global reset imposes too
many constraints to allow retiming unless initial conditions
are calculated and the global reset itself is now excluded
from retiming purposes. Local synchronous resets and en-
ables just produce small, self loops that have no e↵ect on
the correct operation of the algorithm.

Most other design features can be accommodated by
simply adding appropriate constraints. As an example, all
tristated lines can’t have registers applied to them, while
mandatory elements such as those seen in synchronous
memories can be easily accommodated by mandating reg-
isters on the appropriate nets.

Memories themselves can be retimed like any other el-
ement in the design, with dual ported memories treated
as a single node for retiming purposes. Memories that
are synthesized with a negative clock edge (to create the
design illusion of asynchronous memories) can either be

Circles are combinational
logic, labelled with delays.

Critical path is 5.

We want to improve
it without changing
circuit semantics.

IN OUT

1 1

1 1 22

Figure 1: A small graph before retiming. The

nodes represent logic delays, with the inputs and

outputs passing through mandatory, fixed regis-

ters. The critical path is 5.

microprocessor core, for which we can envision scenar-
ios where ample task-level parallelism exists. The AES
and Smith/Watherman benchmarks were also C-slowed by
hand, enabling us to evaluate how well our automated tech-
niques compare with careful, hand designed implementa-
tions that accomplishes the same goals.

The LEON 1 processor is a significantly larger synthe-
sized design. Although it seems unusual, there is su�cient
task level parallelism to C-slow a microprocessor, as each
stream of execution can be viewed as a separate task. The
resulting C-slowed design behaves like a multithreaded sys-
tem, with each virtual processor running slower but o↵er-
ing a higher total throughput.

This prototype demonstrates significant speedups on
all 3 benchmarks, nearly doubling the throughput for the
proper parameters. On the AES and Smith/Waterman
benchmarks, these automated results compare favorably
with careful hand-constructed implementations that were
the result of manual C-slowing and pipelining.

In the remainder of the paper, we first discuss the se-
mantic restrictions and changes that retiming and C-slow
retiming impose on a design, the details of the retiming
algorithm, and the use of the target architecture. Fol-
lowing the discussion of C-slow retiming, we describe our
implementation of an automatic retiming tool. Then we
describe the structure of all three benchmarks and present
the results of applying our tool.

2. Conventional Retiming

Leiserson’s retiming treats a synchronous circuit as a
directed graph, with delays on the nodes representing com-
bination delays and weights on the edges representing reg-
isters in the design. An additional node represents the
external world, with appropriate edges added to account
for all the I/Os. Two matrixes are calculated, W and D,
that represent the number of registers and critical path
between every pair of nodes in the graph. Each node also
has a lag value r that is calculated by the algorithm and
used to change the number of registers on any given edge.
Conventional retiming does not change the design seman-
tics: all input and output timings remain unchanged, while
imposing minor design constraints on the use of FPGA fea-
tures. More details and formal proofs of correctness can
be found in Leiserson’s original paper[7].

In order to determine whether a critical path P can be
achieved, the retiming algorithm creates a series of con-

IN OUT

1 1

1 1 22

Figure 2: The example in Figure 2 after retiming.

The critical path is reduced from 5 to 4.

straints to calculate the lag on each node. All these con-
strains are of the form x � y  k that can be solved in
O(n2) time by using the Bellman/Ford shortest path al-
gorithm. The primary constraints insure correctness: no
edge will have a negative number of registers while every
cycle will always contain the original number of registers.
All IO passes through an intermediate node insuring that
input and output timings do not change. These constraints
can be modified to insure that a particular line will contain
no registers or a mandatory minimum number of registers
to meet architectural constraints.

A second set of constraints attempt to insure that every
path longer than the critical path will contain at least one
register, by creating an additional constraint for every path
longer than the critical path. The actual constraints are
summarized in Table 1.

This process is iterated to find the minimum critical
path that meets all the constraints. The lag calculated by
these constraints can then be used to change the design
to meet this critical path. For each edge, a new register
weight w

0 is calculated, with w
0(e) = w(e)� r(u) + r(v).

An example of how retiming a↵ects a simple design can
be seen in Figures 2 and 2. The initial design has a critical
path of 5, while after retiming the critical path is reduced
to 4. During this process, the number of registers is in-
creased, yet the number of registers on every cycle and
the path from input to output remain unchanged. Since
the feedback loop has only a single register and a delay of
4, it is impossible to further improve the performance by
retiming.

Retiming in this form imposes only minimal design lim-
itations: there can be no asynchronous resets or similar
elements, as the retiming technique only applies to syn-
chronous circuits. A synchronous global reset imposes too
many constraints to allow retiming unless initial conditions
are calculated and the global reset itself is now excluded
from retiming purposes. Local synchronous resets and en-
ables just produce small, self loops that have no e↵ect on
the correct operation of the algorithm.

Most other design features can be accommodated by
simply adding appropriate constraints. As an example, all
tristated lines can’t have registers applied to them, while
mandatory elements such as those seen in synchronous
memories can be easily accommodated by mandating reg-
isters on the appropriate nets.

Memories themselves can be retimed like any other el-
ement in the design, with dual ported memories treated
as a single node for retiming purposes. Memories that
are synthesized with a negative clock edge (to create the
design illusion of asynchronous memories) can either be

Add a register, move
one circle.
Performance
improves by 20%.

Logic Synthesis tools can do this in
simple cases.

42

Gate Driving long wire and other gates

43

tp = 0.69RdrCint + 0.69RdrCw + 0.38RwCw + 0.69RdrCfan + 0.69RwCfan

= 0.69Rdr(Cint + Cfan) + 0.69(Rdrcw + rwCfan)L + 0.38rwcwL2

Rw = rwL, Cw = cwL

Driving Large Loads
‣ Large fanout nets: clocks, resets, memory bit lines, off-chip
‣ Relatively small driver results in long rise time (and thus

large gate delay)

‣ Strategy:

‣ How to optimally scale drivers?
‣ Optimal trade-off between delay per stage and total number of stages?

Staged Buffers

44

