A #M‘JL'

PR EECS 151/251A
B 8 Spring 2023

¢ Digital Design and
we Integrated Circuits

 Instructor:
- Wawrzynek

Lecture 14 - Exam1 Review

Announcements

Q No class Thursday 3/9.

a Midterm Exam 6-9PM
Q Latimer 120 (alternate seating)
Q Exam covers Lectures 1-12and HW 1 -6

Q One double sided handwritten sheet of
paper allowed. No calculators.

A Homework #6 assignment solutions posted
Monday 3/6 - part of exam 1.

A No homework posted Friday 3/3 nor due
Monday 3/13.

Q No Wawrzynek office hour(s) today

2

Review with sample slides

Q Do not study only the following slides.
These are just representative of what
you need to know.

A Go back and study the entire lecture.

Moore’s Law - 2x transistors per 1-2 yr

Transistors
Per Die

1 1
o ¥ 1965 Actual Data 16 26 4G

10°4{ m MOS Arrays & MOS Logic 1975 Actual Data 256Mm S12M

108 1975 Projection 64M 128m Itanium™
Memo Pentium® 4

107 A M L Pentium® Il

ICroprocessor ®
108 Pentiumpﬂ’enﬁum -

105
104
103
102
101 . ;

e B e o B o A e o e L
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Dennard Scaling

Things we do: scale
dimensions, doping, [N
Vdd. N;ﬁ_Sxi()lf’/cm3

TABLE I

SCALING RESULTS FOR CircuiT PERFORMANCE

Device or Circuit Parameter Scaling Factor
What we geft: ' —
5 . Device dimension tos, L, W
K< as mdny trans '|'OI”S Doping conecentration N,

Voltage V'
. Capacitance ed /i
I pacianc
dens”Y‘ Delay time/circuit VC/I

Power dissipation/circuit VI
Power density VI/A

Whose gafes switch « Power density scaling ended in 2003

times faster! (Pentium 4: 3.2GHz, 82W, 55M FETs).

Design Space & Optimality
\\Par'%"_r_‘g, Optimal” Frontier

PerformancL
(tasks/sec) .

high-performance at high-cc

- Cost(# of components)
low-performance at low-cost

e

Cost

* Non-recurring engineering
(NRE) costs

 Cost to develop a design
(product)
« Amortized over all units shipped

« E.g. $20M in development adds
$.20 to
each of 100M units

N
|+ Recurring costs

)

|

- Cost to manufacture, test and
package a unit

(around 16nm node) which

fixed cost

cost per IC = variable cost per IC +
volume

)

yields:

/ﬁ « Processed wafer cost is ~10k
| » 50-100 large FPGAs or GPUs

variable cost =

cost of die + cost of die test + cost of packaging

final test yield

/"« 200 laptop CPUs
* >1000 cell phone SoCs

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be
written as an expression in Boolean Algebra using AND, OR, NOT.

I[Iogglyelﬁl;?t for [close to
pulation] implementaton]

How do we convert from one to the other?

Inverter Example of Restoration
Example (look at 1-input gate, to keep it simple):

_s———v-—-l P — T i ey
I
|
|
|

Vi . A S Vin
in Q
LS

Idealize Inverter é/“' 4TJ

Vin_ _Do_ Vour \\‘?

Q [nverter acts like a “non-linear” amplifier
4 The non-linearity is critical to restoration

a Other logic gates act similarly with respect to input/output
relationship.

Actual Inverter

9

Register Transfer Level Abstraction (RTL)

Any synchronous digital circuit can be represented with:
. Combinational Logic Blocks (CL), plus
. State Elements (registers or memories)

dock 117 - input

e State elements are
mixed in with CL
output blocks to control
T the flow of data.

e Sometimes used in

Address —+—

Inout Data large groups by
P 7 themselves for
Write Control —+#— “ ong—’rer'm” data

Output Data

storage.
9 10

Implementation Alternative Summary

All circuits/transistors layouts optimized for
application.

Swall function blocks/cells” (gates, FFs)
avtomatically placed and routed.

Full-custow:

Standard-cell:

Gate-array Partially prefabricated wafers with arrays of
(structured ASIC): |[transistors customized with metal layers or vias.
EPRA: Prefabricated chips customized with loadable latches
' or fuses.
: |lnstruction set interpreter customized through
Microprocessor: soffware.
Pomain Specific

Special instruction set interpreters (ex: PSP NP GPU).

Processor:

These days, “ASIC” almost always means Standard-cell.
What are the important metrics of comparisgn?

FPGA versus ASIC

FPGA

total

cost ASIC

volume —>

- ASIC: Higher NRE costs (10’s of $M). Relatively Low cost per
die (10’s of $ or less).

- FPGAs: Low NRE costs. Relatively low silicon efficiency =
high cost per part (> 10’s of $ to 1000’s of $).

- Cross-over volume from cost effective FPGA design to ASIC
was often in the 100K range.

Hardware Description Languages

Basic Idea: “Structural” example:
. . . . Decoder (output x0,x1,x2,x3;
- Language constructs describe circuits with inputs a,b)
two basic forms: {
< s . 1 bar, bbar;
= Structural descriptions: connections of ﬁﬁbzaf b);ar
components. Nearly one-to-one inv(abar, a);
correspondence to with schematic diagram. and (x0, abar, bbar);
] .. . and(x1, abar, b)’
= Behavioral descriptions: use high-level and (x2, a, bbar) ;
constructs (similar to conventional and(x3, a, b);
programming) to describe the circuit }
function. Behavioral” I
Originally invented for simulation. Deiogg’f}"futﬁﬁ?ﬂ%ﬁ;l,xz,xs,,
- “logic synthesis” tools exist to -’;nPUtS a,b)
auToma’ricall}/ convert to gate level case [a b]
representation. 00: [x0 x1 x2 x3] = 0x8;
_ A . 01: [x0 x1 x2 x3] = 0x4;,
ngh-level constructs greatly improves 10- [x0 x1 x2 %3] = 0x2r
designer productivity. 11: [x0 x1 x2 x3] = 0x1;
- However, this may lead you to falsely ; endcase;
believe that hardware design can be
reduced to writing programs™ : .
g program Warning: this is a fake HDL!
13

*Describinﬁ hardware with a Ianiuaie iS similarI however| to writini a ﬁarallel ﬁl‘Oﬁram.

Review - Ripple Adder Example

module FullAdder(a, b, ci,
input a, b, ci;
output r, co,
assign r =a * b * ci,
assign co = a

endmodule

module Adder (A, B, R);,
input [3:0] A,
input [3:0] B;
output [4:0] R;

wire cl, c2, c3;

FullAdder

addo(.a(A[0]), .b(B[0]),

addl(.a(A[l])/ -b(B[l])/

add2(.a(A[2])/ .b(B[2]),

add3(.a(A[3]), .b(B[3]),
endmodule

&ci + a&b + bé&cin;

r, co); a b ci
gy
FA
L
cO r
a3 b3 az bz al bl
L ey L
FA FA FA

ra re
.ci(1’b0), .co(cl),

.ci(cl), .co(c2), .r(R[1])),
.ci(c2), .co(c3), .r(R[2])),
.ci(c3), .co(R[4]), .xr(R[3])),

c.._llql_ll

r ro
.r(R[0])),

14

Example - Ripple Adder Generator

Parameters give us a way o generalize our designs. A module becomes a “generator”
for different variations. Enables design/module reuse. Can simplify testing.

Declare a parameter with default value.
module Adder (A, B, R);,

‘parameter N = 4, - “Note: this is not a port. Acts like a “synthesis-time” constant.

“Input [N-ITU] A oo Replace all occurrences of “4” with “N’.
input [N-1:0] B, .-t

output [N:0] R; _--\,a.japle exists only in the specification - not in the final circuit.
wire [N:0] C;

_____________ Keyword that denotes synthesis-time operations

For-loop creates instances (with unique names)

-
-
-
-
-
—— -

__

FullAdder add(a(aAli], b(B[J.]), .ci(C[i]), .co(C[i+1]), .r(R[i])),

end
endgenerate
Adder adder4 (...),
assign C[0] = 1'b0; Overwrite parameter
assign R[N] = C[N];, Adder #(.N(64)) N at instantiation.
endmodule adderé64 (...),

15

EECS151 Registers

A All registers are “N” bits wide - the value of N is specified at instantiation
Q All positive edge triggered.

module REGISTER(q, d, clk);

C/k_g ol o parameter N = 1;

| module REGISTER CE(q, d, ce, clk);

ce parameter N = 1;
olk :g qr— On the rising clock edge if clock enable (ce) is 0 then the register is
disabled (it’s state will not be changed).
module REGISTER R(q, d, rst, clk);
—q parameter N = 1;
olk —b qr— parameter INIT = 1b’0;
r|St On the rising clock edge if reset (rst) is 1 then the state is set to the value
of INIT. Default INIT value is all 0’s.
I
g c€ module REGISTER R CE(q, d, rst, ce, clk);
clk —> rstq parameter N = 1;

| parameter INIT = 1b’0;

Reset (rst) has priority over clock enable (ce).
16

4-bit wrap-around counter ok

V
0,1,2 34,567,809, 10,)
11, 12, 13, 14, 15, O, 1, ... —+1 [—» [value
reset Henable

module counter{(value, enable, reset, clk);
output [3:0] value;
input enable, reset, clk;
wire [3:0] next;
REGISTER_R #(4) state (.q{value), .d(next), .rst(reset), .
assign next = value + 1;
endmodule // counter

FPGA Overview

Q Basic idea: two-dimensional array of logic blocks and flip-flops with a
means for the user to configure (program):

1. the interconnection between the logic blocks,
2. the function of each block.

Logic Logic Logic Logic Logic Logic
Cell Cell Cell Cell Cell Cell

v
}
}
|
}
}
!

Logic Logic Logic Logic Logic Logic
Cell Cell Cell Cell Cell Cell

Logic Logic Logic Logic Logic Logic
Cell Cell Cell Cell Cell Cell

Logic Logic Logic Logic Logic Logic
Cell Cell Cell Cell Cell Cell

Logic Logic Logic Logic Logic Logic
Cell Cell Cell Cell Cell Cell

VoV, V.Y

—

Data In

10 1"

[RO R G A

F=Z F=Z F=Z F=Z Logic Logic
5 ! Cell Cell
6

Clock

v

User Programmability

» Latch-based (Xilinx, Intel /Altera, ... Q Latches are used to:

. 1. control a switch to make or
| latch break cross-point

— connections in the

)\ interconnect

\\ \ 2. define the function of the

logic blocks

. 3. set user options:
+ reconfigurable MOSFET used ithin the loaic block

— in the input/output blocks
— global reset/clock

d “Configuration bit stream”

IS loaded under user
control

- relatively large.

19

4-LUT Implementation

LUT Q n-bit LUT is implemented as a 2n x 1
INPUTS memory:

» inputs choose one of 2 memory
@7 locations.
= memory locations (latches) are

normally loaded with values from
latch user’s configuration bit stream.

LUT » Inputs to mux control are the CLB
16 @— x|, outPur nputs. o

MuUX A Result is a general purpose “logic
gate”.

» n-LUT can implement any function of
n inputs!

latch Latches programmed as part
~—_— of configuration bit-stream

Example Partition, Placement, and Route

ouT IN Q Example Circuit:
= collection of gates and flip-flops
HH
l ' } ouT
Y
A B ——
— é_

Two patrtitions. Each has single output, no more than 4 inputs, and
no more than 1 flip-flop. In this case, inverter goes in both partitions.

Note: the partition can be arbitrarily large as long as it has not more
than 4 inputs and 1 output, and no more than 1 flip-flop.

21

Some Laws of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and
AND operations, and Os and 1s (literals are left unchanged).

D
{F(x,%,,..,%,,0,L+,2)} 7 ={F(x,%,,...,x,,1,0,,4)}
Any law that is true for an expression is also true for its dual.

Operations with O and 1:

x+0=x X*1=x
x+1=1 x*0=0
ldempotent Law:
X+ X=X X X=X
Involution Law:
(x7)"=x
Laws of Complementarity:
x+x'=1 x x’=0

Commutative Law:
Xty=y+Xx Xy=yX

22

Algebraic Simplification
Cout = a’bc + ab’c + abc’ + abc
=a'bc + ab’c + abc’ + abc + abc
=a'bc + abc + ab’c + abc’ + abc
= (a’ + a)Jbc + ab’c + abc’ + abc
=(1)bc + ab’c + abc’ + abc
= bc + ab’c + abc’ + abc + abc
= bc + ab’c + abc + abc’ + abc
= bc + a(b’ +b]c + abc’ +abc
=bc + a(1)c + abc’ + abc
=bc + ac + ab[c’ + c]
=pbc + ac + ab(1]
=pbc+ac+ab

Canonical Forms

d Standard form for a Boolean expression - unigue algebraic expression
directly from a true table (TT) description.

Q Two Types:

* Sum of Products (SOP)
* Product of Sums (POS)

* Sum of Products (disjunctive normal form, minterm expansion). Example:

Minterms
a'b'c'
a'b'c’

a'bc’

Hh

One product (and) term for each 1 in f:

f =a'bc + ab'c’' + ab'c + abec' + abc
a'be f' =a'b'ec’' + a'b’'c + a'be’
ab'c'
ab'c
abc'

H UMK HOOOOW
H B OOKr R O O|b
H Okr oOoRr o kR o|n
R RRrRPROOO|M
O o0oo0oo0ooRrkRHR

What is the cost?

abc

24

Karnaugh Map Method

A Adjacent groups of 1's represent product terms

AN a
00 b 0,1
1 0 0d
f=a 100.
g=b
ab
ab
c 000111 10 c \.0001 11 10
oololAlo
1 AR
11010 D 110l 0NV
cout=ab+bc+ac

Multi-level Combinational Logic

Another Example: F = abc + abd +a'c'd' + b'c'd’

a let x

X

ab y = c+d
f=xy + x'y'

b1~

By

J U

)t

Incorporates fanout.

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics
Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

26

NAND-NAND & NOR-NOR Networks
0 Mapping from AND/OR to NAND/NAND

N a) b)
S-S
ey .

Finite State Machines (FSMs)

2 FSM circuits are a type of FsM .
sequential circult. xn1— - e
= output depends on present

and past inputs
— effect of past inputs is
represented by the current state

[output value]

input
value

Q Behavior is represented by
State Transition Diagram:

» traverse one edge per clock
cycle. K

Formal Design Process (3,4)

IN=0
State Transition Table:

present next

state OUT|IN | state

IN=1 IN=1

EVEN 0O |0 |EVEN

EVEN O |1 1] ODD

ODD 17 |0 | ODD ODD

ODD 1 |1 |EVEN OUT=1

IN=0
Invent a code to represent states:

Let O = EVEN state, 1 = ODD state

present state (ps) | OUT [IN |next state (ns) Derive logic equations from
3 ‘1) table (how?):

0 1 OuT =PS

1 0 NS = PS xor IN

- 2 OO
- 2 OO

29

FSM CL block rewritten

Femmm e — * PLT L E :
always @_*___i ________ for sensitivity list
begin .. .Normal values: used unless
, next_state = IDLE;, specified below.
wout = 1b0;,
case (state)
IDLE : if (in == 1bl) next state = SO, .
S0 : if (in == 1bl) next state = S1; .. Within case only need to
S1 : begin specify exceptions to the
out = 1bl; normal values.
if (in == 1bl) next state = S1; .~
end
default: ;
endcase Note: The use of “blocking assignments” allow signal
end values to be ‘“rewritten”, simplifying the specification.

Endmodule

FSM Recap

Moore Machine

input value

STATE
[output values]

inputs: -

CL

present state$—+— FFs

next state

—= outputs

Mealy Machine

input value/output values

inputs ——=

present state

CL

—— outputs

~—hext state

FFs [t

Both machine types allow one-hot implementations.

31

One-hot encoded combination lock

ENTER &
bad code

ENTER &
correct code

RST

COM1 —

BAD1

ENT —
RST (¢

START
ENT A

RST

COM1 —
ENT ———
RST ———C

RST
ENT

RSTF—C::}_ZX::>_
ENT —

ENT
COomz

BaDz

RST

COmMz —
ENT —

oK1

),

RST —C

oKz

ERROR

OPEN

D)

Final product ...

“The planar
process”

Jean Hoerni,
Fairchild
Semiconductor
1958

Top-down view:

Physical Layout

NAND Gate Layout

- Parallel PMOS Transistors

7 N P-Diffusion
T 11— (A8
T
A :

p

P?, wire connects
PMOS & NMOS gates

Metal 1-Diffusion | X
Contact ‘N

Series NMOS Transistors

» How do transistor circuvits get “laid out” as geometry?
» What circuit does a physical layout implement?

3 Whg}re are the transistors and wires and contacts and
vias?

34

Complex CMOS Gate

OuT=D+A-(B+C) OUT=D*A+B+C

A —

] ouT

D]

4-to-1 Transmission-gate Mux

sO

QA The series connection of pass-
transistors in each branch
effectively forms the AND of s1
and s0 (or their complement).

T

in00 >—

1
R
E QA C t to logic gat
= mplementaton
RS EEN
vt b d E
? Any bett lutions?
— ny oetter Soiutions :
b b
¥ T

36

Tri-state Buffers
Tri-state Buffer: m;[}om A

OE
0o 1|z~ ——impedance” (output a
V9 Y disconnected) B i
en ——=C
en —— out

Variations: in ~DC out O .

|N~[>o—0UT |N~[?0UT
OF OF IN | OUT OF IN | OUT a
0 -] z OE 0 o0l 0
1 u‘ 1 o o1 | 1 . v
1 110 1 -1z fransmission gate

useful in
implementation

Inverting buffer Inverted enable

Latches and Flip-flops

Positive Level-sensitive latch: CLK

D
(|3 Q

Positive Edge-triggered flip-flop
built from two level-sensitive
latches:

—OJ 0

clk

Latch Implementation:

clk’
O
Q
N clk
clk N

clk

Example

Parallel to serial

o] Z‘TKL° ka_h converter circuit
clk— Q m
. T . B
ok | T time(clk—Q) + time(mux) + time(setup)
a X T =T q * Tmux * Tsetup
. ‘ ‘ —ck=Q . ’ ‘ - setup

A

—b‘ mux‘-—

Spring 2019

EECS151 Page 39

Gate Delay Summary

The y-intercepts (intrinsic delay) for
2-NOR NAND and NOR are both twice that of
2-NAND the inverter. The NAND line has a

gradient 4/3 that of the inverter

(steeper); for NOR it is 5/3 (steepest).

tp// inverter
Af 5f
_ tpg (2 + 5) (2 +)
f

A

3
> 2-input NAND 2-input NOR

What about gates with more than 2-inputs?
4-input NAND:

ty =t (42

\ i slope

intercept

Wire Delay

» Even in those cases where the . For short wires on ICs,
transmission line effect is Eesiistt_anczte isf;nsignif:gar}t
.- : relative 1o erectve ~ O
negligible: transistors), but C is important.
- Wires posses distributed — Typically around half of C of
resistance and capacitance gate load is in the wires.
vi v2 v3 va Forlong wires on ICs:
AR AN AN (AR (AR (RS — busses, clock lines, global
T T T T T T control signal, etc.
: _ , — Resistance is significant,
- Time constant associated with therefore distributed RC effect
distributed RC is proportional dominates.
to the square of the length — signals are typically “rebuffered”

to reduce delay:

| |

time

| Cd

Spring 2018 EECS151 Page 41

How to retime logic

Critical path is 5.
We want to improve
IT without changing
circuit semantics.

Add a register, move
one circle.
Performance
improves by 20%.

Circles are combinational
logic, labelled with delays.

Figure 1: A small graph before retiming. The
nodes represent logic delays, with the inputs and
outputs passing through mandatory, fixed regis-
ters. The critical path is 5.

Figure 2: The example in Figure 2 after retiming.
The critical path is reduced from 5 to 4.

Logic Synthesis tools can de this in
simple cases.

Gate Priving long wire and other gates

v (r,,¢c,, L)

out [

tp — O 69Rdrc

int

+ 0.69R,,C,, + 0.38R,,C,, + 0.69R,;,C;,,, + 0.69R,,C,,,

w

= 0.69R;,(Cys + Cr) + 0.69R ., + 1, Cro)L + 0.387,,¢, L%

nt

Priving Large Loads

Large fanout nets: clocks, resets, memory bit lines, off-chip
Relatively small driver results in long rise time (and thus

large gate delay)
“§>°~1

Strategy: - Staged Buffers

SR

s S

IS

How to optimally scale drivers?

Olp’rlmal 'g'ade—off between delay per stage and total number
stages?

44

