

EECS 151/251A Spring 2023 Digital Design and Integrated Circuits

Instructors:
Wawrzynek

Lecture 10: CMOS2

Announcements

CMOS Transistors

Transistor Strength and Symmetry

1. Transistor "strength" proportional to W/L. In digital circuits, L is almost always minimal allowed by process.

2. MOS transistors are symmetrical devices (Source and drain are interchangeable). But usually designed to be used in one direction.

For nFET, source is the node w/ the lowest voltage. For pFET source is node with highest voltage.

MOS Transistor as a Resistive Switch

MOS Transistor

Let's look beneath the abstraction: origins of V_{T} and $\boldsymbol{R}_{\text {on }}$

MOSFET Threshold Voltage

Transistor "resistance"

- Nonlinear I/V characteristic:

- But, linearizing makes all delay and power calculations simple (usually just 1st order ODEs):

ON/OFF Switch Model of MOS Transistor

Plot on a "Log" Scale to See "Off" Current

Process engineers can:

increase lon $_{\text {by }}$ lowering V_{t} - but that raises I_{0} ff decrease loft by raising V_{t} - but that lowers lon.

Latest Modern Process

Transistor channel is a raised fin. Gate controls channel from sides and top.

A More Realistic Switch

A Logic Perspective

NMOS Transistor

A Complementary Switch

Remember, source is the node w/ the highest voltage.

The CMOS Inverter: A First Glance

Represents the sum of all the capacitance at the output of the inverter and everything to which it connects: (drains, interconnections gate capacitance of next gate(s))

The Switch Inverter First-Order DC Analysis*

$$
\begin{gathered}
V_{O L}=0 \\
V_{O H}=V_{D D}
\end{gathered}
$$

*First-order means we will ignore Capacitance.

Switch logic

Static Logic Gate

- At every point in time (except during the switching transients) each gate output is connected to either $\mathrm{V}_{D D}$ or $\mathrm{V}_{G N D}$ via a low resistive path.
- The output of the gate assumes at all times the value of the Boolean function implemented by the circuit (ignoring, once again, the transient effects during switching periods).

Example: CMOS Inverter

Building logic from switches (NMOS)

AND

$$
Y=X \text { if } A \text { AND } B
$$

Parallel

OR
$Y=X$ if A OR B
(output undefined if condition not true)

Logic using inverting switches (PMOS)

NOR

$$
\begin{aligned}
Y & =X \text { if } \bar{A} \text { AND } \bar{B} \\
& =\overline{A+B}
\end{aligned}
$$

NAND

$$
\begin{aligned}
Y & =X \text { if } \bar{A} \text { OR } \bar{B} \\
& =\overline{A B}
\end{aligned}
$$

(output undefined if condition not true)

Example Gate: NAND

- PDN: $\mathrm{G}=\mathrm{AB} \Rightarrow$ Conduction to GND
- PUN: $F=\bar{A}+\bar{B}=\overline{\mathrm{AB}} \Rightarrow$ Conduction to $V_{D D}$

Static Complementary CMOS

PUN and PDN are dual logic networks:

series connections in the PUN are parallel connections in the PDN parallel connections in the PUN are series connection sin the PDN

PUN and PDN functions are complements: guarantees they are mutually exclusive, under all input values, one or the other is conductive, but never both!

Example Gate: NOR

\mathbf{A}	\mathbf{B}	Out
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Truth Table of a 2 input NOR gate

Complex CMOS Gate

OUT $=\overline{D+A \cdot(B+C)}$
OUT $=\overline{D \cdot A+B \cdot C}$

Graph Models for Duals

Non-inverting logic

Switch Limitations

Tough luck ...

"Static" CMOS gates

- Static CMOS gates are always inverting

Transmission Gate

- Transmission gates are the way to build ideal "switches" in CMOS.
- In general, for an ideal switch, both transistor types are needed:
nFET to pass zeros.
] pFET to pass ones.
- The transmission gate is bi-directional (unlike logic gates).

- Does not directly connect to Vdd and GND, but can be combined with logic gates or buffers to simplify many logic structures.

Transmission-gate Multiplexor

2-to-1 multiplexor:
$c=s a+s^{\prime} b$

Switches simplify the implementation:

Compare the cost to logic gate implementation.
Care must be taken to not string together many pass-transistor stages. Occasionally, need to "rebuffer" with static gate.

4-to-1 Transmission-gate Mux

- The series connection of passtransistors in each branch effectively forms the AND of $s 1$ and s 0 (or their complement).
- Compare cost to logic gate implementation

Any alternate solutions?

Alternative 4-to-1 Multiplexor

- This version has less delay from in to out.
- In both versions, care must be taken to avoid turning on multiple paths simultaneously (shorting together the inputs).

Tri-state Buffers

\section*{Tri-state Buffer:

 | $O E$ | | N |
| :---: | :---: | :---: |
| OUT | | |
| 0 | 0 | Z |
| 0 | 1 | Z |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
 "high impedance" (output disconnected)}

Variations:

Inverting buffer

Inverted enable

$$
\begin{aligned}
& \text { in } \\
& \frac{U T}{T}
\end{aligned}
$$

transmission gate provide the isolation: usually designed this way

CMOS Implementation

Tri-state Buffers

Tri-state buffers are used when multiple circuits all connect to a common node or wire. Only one circuit at a time is allowed to drive

Tri-state buffers enable "bidirectional" connections.
 the bus. All others "disconnect" their outputs, but can "listen".

Tri-state Based Multiplexor

Multiplexor:

If $s=1$ then $c=a$ else $c=b$

Transistor Circuit for inverting-multiplexor:

Latches and Flip-flops

Positive Level-sensitive latch:

Latch Implementation:

When the clock is high, the latch is "transparent"

Positive edge-triggered flip-flop

Sensing: When clock is low

A flip-flop "samples" just before the edge, and then "holds" value.

Sampling

latch

Holding latch

clk $=0$ clk $=1$

Ready to capture new value on clock edge

Is outputing last previous captured value.

Capture: When clock goes high

A flip-flop "samples" right before the edge, and then "holds" value.

Sampling
latch

Holding latch

$c \mid k=1 \quad \mathrm{D}-$

Remembers value just captured.

Outputs value just captured.

Return to sensing: When clock is low

A flip-flop "samples" just before the edge, and then "holds" value.

Sampling
latch
Holding latch

clk $=0$ $\mathrm{clk}^{\prime}=1$

Ready to capture new value on clock edge

Continue to output captured value.

Tri-state-Inverter Latch

Negative
Level-sensitive latch:

- Commonly used in standard cell flip-flops.
- More transistors than pass-transistor version, but more robust.
a Lays out well with modern layout rules.

