
EECS 151/251A Homework 8

Due Monday, April 17, 2023

Problem 1: Memory Composition

Neatly draw a block diagram for a 2048 × 64 single-port RAM using 1024 × 32 single-port RAMs.
You are also allowed to use logic gates and multiplexers. The single-port RAMs have 4 input signals
(addr, din, ren, wen) and one output signal (dout).

Solution:

addr
din
ren
wen

dout

addr[9:0]
din[31:0]addr[10]

ren

addr[10]
wen

addr
din
ren
wen

dout

addr[9:0]
din[31:0]addr[10]

ren

addr[10]
wen

0
1

addr[10]

dout[31:0]

addr
din
ren
wen

dout

addr[9:0]
din[63:32]

addr
din
ren
wen

dout

addr[9:0]
0
1

addr[10]

dout[63:32]

din[63:32]

10

32
32

32

10

32
32

10

32
32

32

10

32
32

Problem 2: Stack

Draw a block diagram for a hardware stack, a.k.a. LIFO (Last In First Out) buffer. It has a similar
interface as a FIFO with 3 input signals (ren, wen, din) and 3 output signals (empty, full, dout).
Assume either ren or wen can be 1 at a time. The bit-width of data is 32 and we are using a 10×32



EECS 151/251A Homework 8 2

single-port synch-read-write RAM as storage (stack is full when it has 10 data). You may also use
logic gates, multiplexers, arithmetic blocks, and flip-flops. Remember to annotate multi-bit wires
with their bit-widths.

Solution:

addr
din
ren
wen

dout

4

32
32

dout
0
1

din
0
1

0
1

ren

wen

emp ty

full

+

+

=

=

1

-1

0

10

read

write

read
write

write

4

4

4

4
4

4

4

4

4

Problem 3: Direct-Mapped Write-Through Cache

Draw a block diagram for a direct-mapped write-through cache using a single-port async-read sync-
write RAM for tag and data as well as the valid bits. Cache has 16 lines and the number of data
word per line is 1. Both memory address and data words are 32 bit-wide. You may use logic
gates, multiplexers, arithmetic blocks, and flip-flops. The interface between memory and cache and
between CPU and cache is shown below.

Between memory and cache:

• Read

– Cache sets mem_ren to 1 and mem_addr to the source address.
– Memory reads those signals at the next positive clock edge and starts reading.
– After a few cycles, memory sets mem_valid to 1 and mem_dout to the read data.
– Memory maintains the values of those signals until the next positive clock edge.

• Write

– Cache sets mem_wen to 1, mem_addr to the destination address, and mem_din to the data
to write.



EECS 151/251A Homework 8 3

– Memory reads those signals at the next positive clock edge and starts writing. Cache
does not need to wait for the write to finish.

Between CPU and cache:

• Read

– CPU sets ren to 1 and addr to the source address.
– Cache reads those signals immediately, and sets valid to 1 and dout to the read data

in case of cache hit.
– Otherwise, cache sends a read request to memory, while CPU stalls its datapath.
– When memory returns the data (mem_valid is 1), cache sets valid to 1 and dout to the

read data. CPU resumes opeartions.
– Cache stores the tag and data at the next positive clock edge.

• Write

– CPU sets wen to 1, addr to the destination address, and din to the data to write.
– Cache stores the tag and data. It also sends a write request to memory.

Remember to set the valid bit to 1 when data is stored.
Solution:

addr
din
ren
wen

dout

addr[3:0]
{1, addr[31:4], data}

4

61
61

0
1

state

wen
mem_ valid

ren
state

=
[59:32]

addr[31:4]
28

28

[60]

[31:0]
32

0
1

state

mem_dout
dout

hit

0
1

state

valid
mem_ valid

32
32

mem_ valid

hit
state

addr
32

mem_addr
din

32
mem_din

wen mem_ wen
mem_ ren

0
1

state

mem_dout
data32

32din
32

Problem 4: Loop Unrolling

Draw a block diagram for (direct hardware implementation of) yi = a∗yi−1 +xi with loop unrolling
of interval 3, where a is constant. {xi} is the input sequence and {yi} is the output sequence. The



EECS 151/251A Homework 8 4

unrolled circuit takes {xj , xj+1, xj+2} as input and generates {yj , yj+1, yj+2} as output where j is
a multiple of 3. Minimize the logic (arithmetic operation) depth.

Solution:

+

*

a

*

a2

*

a

*

a3

*

a2

*

a

+ + +

+

xj

xj

xj+1

+

xj xj+1

xj+2

yj

yj+1
yj+2

Problem 5: Pipelining

Write a block diagram for yi = yi−2 + yi−4 + xi using only 2 adders and 4 registers. You must
pipeline the connection between the adders i.e. you cannot connect the output of one adder directly
to the input of the other. Hint: when xi is input, yi−1 is output.

Solution:

+ +

xi

yi-1


