EECS 151/251A Homework 5

Due Monday, Feb 27, 2023

Problem 1: Standard Cell Layout Reverse Engineering

Write a transistor-level schematic of the following layout. What does it implement?

Solution:

Dlay flip-flop.
Schematic:

Problem 2: CMOS

Complete the following CMOS schematic with inputs a, b, c, d, e and output f. Also, write a Boolean expression of the output f.

Solution:

Function:

$$
\begin{equation*}
f=(a b+c d+a e d+b c e)^{\prime} \tag{1}
\end{equation*}
$$

Schematic:

Problem 3: CMOS 2

Write a CMOS schematic for $f=a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+c^{\prime} a^{\prime}$.

Solution:

Function:

$$
\begin{equation*}
f^{\prime}=(a+b)(b+c)(c+a)=a b+b c+c a=a(b+c)+b c \tag{2}
\end{equation*}
$$

Schematic:

Problem 4: MOS Characteristics

Using 32nm predictive LTSpice model at http://ptm.asu.edu/modelcard/LP/32nm_LP.pm (this is different from the one we used in HW1!), measure $I_{D S}$ vs. $V_{D S}$ for $V_{G S}=\{0 \mathrm{~V}, 0.1 \mathrm{~V}, \ldots$, $1 \mathrm{~V}\}$. Sweep $V_{D S}$ from 0 V to 1 V . Create four plots for $\{0.1 \mu \mathrm{~m}$ wide NMOS, $0.05 \mu \mathrm{~m}$ wide NMOS, $0.1 \mu \mathrm{~m}$ wide PMOS, 0.05 mm wide PMOS\}. Set the volatages to negative for PMOS. Also, attach the screenshot of your schematic.

Solution:

Schematic:

$0.1 \mu \mathrm{~m}$ wide NMOS:

$0.05 \mu \mathrm{~m}$ wide NMOS:

$0.1 \mu \mathrm{~m}$ wide PMOS:

$0.05 \mu \mathrm{~m}$ wide PMOS:

Problem 5: Switch Network

Write a truth table of the following switch network with inputs x_{0}, x_{1} and outputs y_{0}, y_{1}, y_{2}.

Here, switches are transmission gates as shown below.

Solution:

x_{1}	x_{0}	y_{2}	y_{1}	y_{0}
0	0	0	0	1
0	1	0	1	0
1	0	0	1	0
1	1	1	0	0

Problem 6: Circular Shifter

Write a schematic of 4 -bit circular shifter using only 16 switches and wires (the specification of switches was given in the previous problem). The 4-bit circular shifter performs left circular shifts on a 4 -bit input signal $\{x 3, x 2, x 1, x 0\}$ and outputs the result as $\{y 3, y 2, y 1, y 0\}$, where the shift amount is given as another 2-bit input signal $\{\mathrm{s} 1, \mathrm{~s} 0\}$ in a binary number. For example, for input $\{x 3, x 2, x 1, x 0\}=4^{\prime} b 1001$ and $\{s 1, s 0\}=2 ’ d 3$, it outputs $\{y 3, y 2, y 1, y 0\}=$ 4'b1100.

Solution:

Problem 7: Delay Flip-Flop

Consider the following flip-flop.

Complete the following waveform for P and Q. Assume each inverter causes 0.5 time unit delay, while transumission gates cause no delay. Dashed lines are written per unit time.

Solution:

