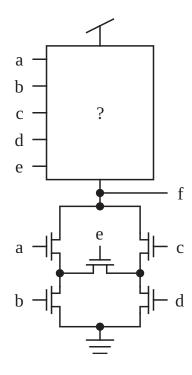

EECS 151/251A Homework 5

Due Monday, Feb 27, 2023

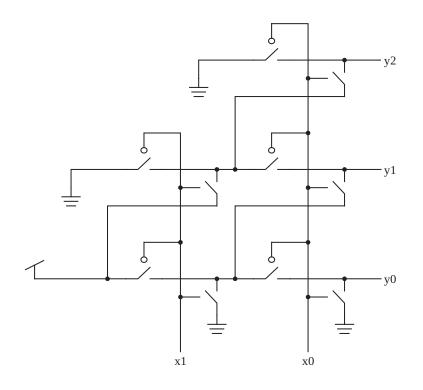

Problem 1: Standard Cell Layout Reverse Engineering

Write a transistor-level schematic of the following layout. What does it implement?

Problem 2: CMOS

Complete the following CMOS schematic with inputs a, b, c, d, e and output f. Also, write a Boolean expression of the output f.

Problem 3: CMOS 2


Write a CMOS schematic for f = a'b' + b'c' + c'a'.

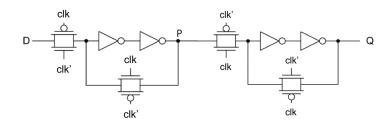
Problem 4: MOS Characteristics

Using **32**nm predictive LTSpice model at http://ptm.asu.edu/modelcard/LP/32nm_LP.pm (this is different from the one we used in HW1!), measure I_{DS} vs. V_{DS} for $V_{GS} = \{0V, 0.1V, ..., 1V\}$. Sweep V_{DS} from 0V to 1V. Create four plots for $\{0.1 \ \mu m \text{ wide NMOS}, 0.05 \ \mu m \text{ wide PMOS}\}$. Set the volatages to negative for PMOS. Also, attach the screenshot of your schematic.

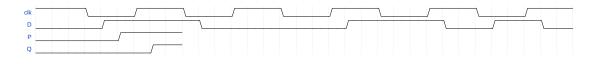
Problem 5: Switch Network

Write a truth table of the following switch network with inputs x_0, x_1 and outputs y_0, y_1, y_2 .

Here, switches are transmission gates as shown below.


$$a \xrightarrow{c} b = a \xrightarrow{c} b \qquad p \xrightarrow{r} q \qquad p \xrightarrow{r'} q$$

Problem 6: Circular Shifter


Write a schematic of 4-bit circular shifter using only 16 switches and wires (the specification of switches was given in the previous problem). The 4-bit circular shifter performs left circular shifts on a 4-bit input signal $\{x3, x2, x1, x0\}$ and outputs the result as $\{y3, y2, y1, y0\}$, where the shift amount is given as another 2-bit input signal $\{s1, s0\}$ in a binary number. For example, for input $\{x3, x2, x1, x0\} = 4'b1001$ and $\{s1, s0\} = 2'd3$, it outputs $\{y3, y2, y1, y0\} = 4'b1100$.

Problem 7: Delay Flip-Flop

Consider the following flip-flop.

Complete the following waveform for P and Q. Assume each inverter causes 0.5 time unit delay, while transumission gates cause no delay. Dashed lines are written per unit time.

