EECS 151 Disc 6

Rahul Kumar (session 1) Yukio Miyasaka (session 2)

Contents

- FF Timing
- Retiming
- Gate Sizing (Inverter Chain)
- Elmore Delay
- Rebuffering
- Transistor Sizing (SPICE Simulation)

Flip-Flops

Setup time: Time needed for D to overwrite the first loop Clk-q delay: The signal needs to pass some transistors from P to Q Hold time: Clock signal might arrive late, so D needs to be stable a little longer

Retiming

Clock period >= clk-q delay + critical path delay + setup time

(Hold time is important when it is larger than clk-q delay, where the next cycle signal may arrive too fast. We need some buffers to delay the signal in that case.)

Move FF to fanin

Driving a large capacitor with a small gate is slow.

Driving a large capacitor with a large gate is fast... but then we also need to drive the large gate.

Inverter Chain

Solution: use N stages. How many?

- Large N: delay dominated by accumulation of delay from each stage
- Small N: delay dominated by slow capacitor charging.

Optimal N is somewhere in the middle.

Example: Inverter Chain

Design an inverter chain to drive a 512 fF load capacitor.

First stage has 2fF input capacitance.

Assume:

• Gamma = 1.5, optimal fanout is 4

$$\begin{cases} t_p = N \cdot t_{p0}(1 + \sqrt[N]{F}/\gamma) \\ \gamma + \sqrt[N]{F} - \frac{\sqrt[N]{F}\ln F}{N} = 0 \\ f = e^{(1 + \gamma/f)} \qquad f = \sqrt[N]{F} \end{cases}$$

Solution: Inverter Chain

Design an inverter chain to drive a 512 fF load capacitor.

First stage has 2fF input capacitance.

$$f = \sqrt{V}$$

$$4 = \sqrt[N]{(512/2)} = \sqrt[N]{256}$$

Gives N = 4, so use 4 inverters.

Elmore Delay

We have only considered delay of gates

Wires also cause some delay, especially in recent technologies

Elmore delay:

- For each resistance on the path, multiply its value by sum of all dependent capacitance
- Sum up all products

Example: Elmore Delay

Example: Elmore Delay

Π (PI) model

Rebuffering

Partition a long wire and drive each piece by a new buffer (or inverter)

Delay/In2 = Rg(Cg+C+CI) + R(C/2 + CI)

Delay/In2 = Rg(Cg + C/2 + Cin) + (R/2)(C/4 + Cin)+ Rb(Cb + C/2 + Cl) + (R/2)(C/4 + Cl)

Homework: Generalize this to N partitions and find the best N using its derivative

Transistor Sizing

We can reduce delay by adjusting gate sizes

Increasing gate size means increasing size of all transistors inside uniformly

How about relative sizes of transistors in a gate?

Transistor Sizing

Usually PMOS is weaker (more resistance)

- We need to make them wider than NMOS
- This balances high-to-low and low-to-high delay

If transistors are connected in a series, their resistance is accumulated

- We need to make them wider than other parallel transistors
- This balances delay for different input patterns

SPICE Simulation

Plot of I/O of the 2nd Inverter

Low-to-high delay

High-to-low delay

Measure the time between Vdd/2 points

PMOS Sizing

Smaller PMOS:

Larger PMOS:

0.6V-			
0.5V-		Smaller low-to-high delay	Larger high-to-low delay
0.4V-			

