EECS 151 Disc 4

 Rahul Kumar (session 1)Yukio Miyasaka (session 2)

Contents

- State machines (Moore and Mealy)
- STD (State Transition Diagram)
- State assignment and encoding
- STD to Verilog
- STD to gate-level circuits

State Machines

- A way to systematically design sequential circuits
- Moore: outputs depend only on current state
- Mealy: outputs depend on current state and input

Example

Design a state machine to determine whether an unsigned binary integer is divisible by 3 .
Inputs:

- $\quad x$: the input integer. Given to FSM one bit at a time.
- rst: synchronous reset. At the next clock edge, clears any state associated with the FSM.
Output: one bit indicating if the value seen so far is divisible by 3 .

Example

Input is supplied one bit at a time, MSB first.

Example: 1010111

Example

Draw a state transition diagram for this state machine.

Example

- Key idea: keep track of the number modulo 3.
- If 0 , the number is divisible by 3 .
- Can we track $\mathrm{N} \% 3$ without storing N ?

Example

What happens when we get a new bit? In pseudocode:

$$
\text { next }=2 * p r e v+b i t
$$

Same equation applies modulo 3 !

$$
\text { next_residue }=\left(2 * p r e v _r e s i d u e ~+~ b i t\right) ~ \% ~ 3 ~
$$

Example

So keep 3 states, S0/S1/S2, corresponding to residues mod 3 .
S0: if input is 1 , go to S 1 . Else, stay at S 0 .
S1: if input is 1 , go to S0. Else, go to S2.
S2: if input is 1 , stay at S2. Else, go to S1.

Example (Moore Machine)

Example

Implement this FSM as a Moore machine in Verilog, using a binary state encoding.


```
module div3_moore(
input clk
input x,
input rst,
output out
);
localparam S0 = 2'b00;
localparam S1 = 2'b01;
localparam S2 = 2'b10;
reg [1:0] next_state;
wire[1:0] state;
REGISTER_R #(.N(2), .INIT(S0)) state_reg (.q(state), .d(next_state), .rst(rst), .clk(clk));
assign out = state == S0;
always @(*) begin
    case (state)
        S0: begin
            next_state = x ? S1 : S0;
        end
        S1: begin
            next_state = x ? S0 : S2;
        end
        S2: begin
                next_state = x ? S2 : S1;
        end
        endcase
end
endmodule
```

Example

Example

Now implement the same logic as a Mealy machine. The output should update as soon as the input updates.

Example (Mealy Machine)


```
module div3_mealy(
input clk
input x,
input rst,
output out
);
localparam S0 = 2'b00;
localparam S1 = 2'b01;
localparam S2 = 2'b10;
reg [1:0] next_state;
wire[1:0] state;
REGISTER_R #(.N(2), .INIT(S0)) state_reg (.q(state), .d(next_state), .rst(rst), .clk(clk));
assign out = next_state == S0;
always @(*) begin
    case (state)
        S0: begin
            next_state = x ? S1 : S0;
        end
        S1: begin
            next_state = x ? S0 : S2;
        end
        S2: begin
            next_state = x ? S2 : S1;
        end
        endcase
end
endmodule
```

Example

Example: Washing machine

- Takes two steps: wash and spin
- Wash twice if a double wash switch \mathbf{D} is on
- wash -> wash -> spin
- Receives a signal T from a timer:
- When it should start washing
- At the end of each step

State Transition Diagram

Ignore output signal for now

State Assignment

$$
\begin{aligned}
& \text { Initial }=\text { state } 0 \\
& \text { Wash }=\text { state } 1 \\
& \text { Wash2 }=\text { state } 3 \\
& \text { Spin }=\text { state } 2
\end{aligned}
$$

Verilog with Binary Encoding


```
module washing_machine_binary(input clk, rst, T, D);
    localparam Initial = 2'b00;
    localparam Wash = 2'b01;
    localparam Wash2 = 2'b11;
    localparam Spin = 2'b10;
    reg [1:0] next_state;
    wire[1:0] state;
    REGISTER_R #(.N(2)) state_reg (.q(state),
.d(next_state), .rst(rst), .clk(clk));
    always @(*) begin
        next_state = state;
        case (state)
            Initial: if(T) next_state = Wash;
            Wash: if(T) next_state = D? Wash2: Spin;
            Wash2: if(T) next_state = Spin;
            Spin: if(T) next_state = Initial;
        endcase
    end
endmodule
```


Gate-Level Circuit with Binary Encoding

s 1	s 0	T	D	n 1	n 0
0	0	1	-	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	1	-	0	0
1	1	1	-	1	0
x	y	0	-	x	y

Gate-Level Circuit with Binary Encoding

s 1	s 0	T	D	n 1	n 0
0	0	1	-	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	1	-	0	0
1	1	1	-	1	0
x	y	0	-	x	y

TD											
sls0								00	01	11	10
:---:	:---:	:---:	:---:	:---:							
00	0	0	0	0							
	01	0	0	1	1						

s1s0	TD				
		00	01	11	10
	00	0	0	1	1
	01	1	1	1	0
	11	1	1	0	0
	10	0	0	0	0

K-map for n0

Gate-Level Circuit with Binary Encoding

s1	s0	T	D	n 1	n 0
0	0	1	-	0	1
0	1	1	0	1	0
0	1	1	1	1	1
1	0	1	-	0	0
1	1	1	-	1	0
x	y	0	-	x	y

K-map for n 1

$$
\mathrm{n} 1=\mathrm{s} 0 \mathrm{~T}+\mathrm{s} 1 \mathrm{~T}^{\prime}
$$

TD					
sls0					

\hline 00 \& 0 \& 0 \& 1 \& 1

\hline \& 01 \& 1 \& 1 \& 1\end{array}\right) 0\)

K-map for n0

$$
\mathrm{n} 0=\mathrm{s} 0 \mathrm{~T}^{\prime}+\mathrm{s} 1^{\prime} \mathrm{T} \mathrm{D}+\mathrm{s} 0^{\prime} \mathrm{s} 1^{\prime} \mathrm{T}
$$

Berkeley

Gate-Level Circuit with Binary Encoding

$$
\begin{aligned}
& n 1=s 0 T+s 1 T^{\prime} \quad n 0=s 0 T^{\prime}+s 1^{\prime \prime} T D+s 0^{\prime} s 1^{\prime \prime} T \\
& =s 0 \mathbf{T}^{\prime}+\mathbf{s} 1^{\prime} \mathbf{T}\left(\mathbf{D}+\mathbf{s} 0^{\prime}\right)
\end{aligned}
$$

One-hot Encoding

- state $0=0001$ (Initial)
- state $1=0010$ (Wash)
- state $2=0100$ (Spin)
- state $3=1000$ (Wash2)

State assignment doesn't really matter in one-hot encoding

Verilog with One-hot Encoding


```
module washing_machine_onehot(input clk, rst, T, D);
    wire [3:0] next_state, state;
    REGISTER_R #(.N(4)) state_reg (.q(state),
.d(next_state), .rst(rst), .clk(clk));
    assign next_state[0]=}⿱(s
```

Focus on incoming edges for each node

Gate-Level Circuit with One-hot Encoding

```
assign next_state[0] = (state[0] & ~T) |
    (state[2] & T);
assign next_state[1] = (state[1] & ~T) |
    (state[0] & T);
assign next_state[2] = (state[2] & ~T) |
    (state[1] & T & ~D) |
    (state[3] & T);
assign next_state[3] = (state[3] & ~T) |
    (state[1] & T & D);
```


