
EECS 151 Disc 4
Rahul Kumar (session 1)

Yukio Miyasaka (session 2)

Contents

● State machines (Moore and Mealy)
● STD (State Transition Diagram)
● State assignment and encoding
● STD to Verilog
● STD to gate-level circuits

State Machines

● A way to systematically design sequential circuits
● Moore: outputs depend only on current state
● Mealy: outputs depend on current state and input

Example

Design a state machine to determine whether an unsigned binary
integer is divisible by 3.

Inputs:

● x: the input integer. Given to FSM one bit at a time.

● rst: synchronous reset. At the next clock edge, clears any state
associated with the FSM.

Output: one bit indicating if the value seen so far is divisible by 3.

Example

Input is supplied one bit at a time, MSB first.

Example: 1010111

Example

Draw a state transition diagram for this state machine.

Example

● Key idea: keep track of the number modulo 3.
● If 0, the number is divisible by 3.
● Can we track N % 3 without storing N?

Example

What happens when we get a new bit? In pseudocode:

Same equation applies modulo 3!

next = 2*prev + bit

next_residue = (2*prev_residue + bit) % 3

Example

So keep 3 states, S0/S1/S2, corresponding to residues mod 3.

S0: if input is 1, go to S1. Else, stay at S0.

S1: if input is 1, go to S0. Else, go to S2.

S2: if input is 1, stay at S2. Else, go to S1.

Example (Moore Machine)

[out]

Example

Implement this FSM as a Moore machine in Verilog, using a binary
state encoding.

Example
module div3_moore(
 input clk,
 input x,
 input rst,
 output out
);
 localparam S0 = 2'b00;
 localparam S1 = 2'b01;
 localparam S2 = 2'b10;
 reg [1:0] next_state;
 wire[1:0] state;
 REGISTER_R #(.N(2), .INIT(S0)) state_reg (.q(state), .d(next_state), .rst(rst), .clk(clk));

 assign out = state == S0;

 always @(*) begin
 case (state)
 S0: begin
 next_state = x ? S1 : S0;
 end
 S1: begin
 next_state = x ? S0 : S2;
 end
 S2: begin
 next_state = x ? S2 : S1;
 end
 endcase
 end
endmodule

Example

Now implement the same logic as a Mealy machine. The output
should update as soon as the input updates.

Example (Mealy Machine)

Example
module div3_mealy(
 input clk,
 input x,
 input rst,
 output out
);
 localparam S0 = 2'b00;
 localparam S1 = 2'b01;
 localparam S2 = 2'b10;
 reg [1:0] next_state;
 wire[1:0] state;
 REGISTER_R #(.N(2), .INIT(S0)) state_reg (.q(state), .d(next_state), .rst(rst), .clk(clk));

 assign out = next_state == S0;

 always @(*) begin
 case (state)
 S0: begin
 next_state = x ? S1 : S0;
 end
 S1: begin
 next_state = x ? S0 : S2;
 end
 S2: begin
 next_state = x ? S2 : S1;
 end
 endcase
 end
endmodule

Example: Washing machine

● Takes two steps: wash and spin
● Wash twice if a double wash switch D is on

○ wash -> wash -> spin

● Receives a signal T from a timer:

○ When it should start washing

○ At the end of each step

State Transition Diagram

Initial

WashSpin

Wash
2

TT

T

T & ~D

T & D

~T

~T~T

~T Ignore output signal for now

State Assignment

Initial = state 0

Wash = state 1

Wash2 = state 3

Spin = state 2

s1\s0 0 1

0 Initial Wash

1 Spin Wash2

Transitions in binary encoding

Verilog with Binary Encoding
module washing_machine_binary(input clk, rst, T, D);
 localparam Initial = 2'b00;
 localparam Wash = 2'b01;
 localparam Wash2 = 2'b11;
 localparam Spin = 2'b10;

 reg [1:0] next_state;
 wire[1:0] state;
 REGISTER_R #(.N(2)) state_reg (.q(state),
.d(next_state), .rst(rst), .clk(clk));

 always @(*) begin
 next_state = state;
 case (state)
 Initial: if(T) next_state = Wash;
 Wash: if(T) next_state = D? Wash2: Spin;
 Wash2: if(T) next_state = Spin;
 Spin: if(T) next_state = Initial;
 endcase
 end
endmodule

Initial

WashSpin

Wash2

TT

T

T & ~D

T & D

~T

~T~T

~T

Gate-Level Circuit with Binary Encoding

s1 s0 T D n1 n0

0 0 1 - 0 1

0 1 1 0 1 0

0 1 1 1 1 1

1 0 1 - 0 0

1 1 1 - 1 0

x y 0 - x y

Gate-Level Circuit with Binary Encoding

s1 s0 T D n1 n0

0 0 1 - 0 1

0 1 1 0 1 0

0 1 1 1 1 1

1 0 1 - 0 0

1 1 1 - 1 0

x y 0 - x y

00 01 11 10

00 0 0 0 0

01 0 0 1 1

11 1 1 1 1

10 1 1 0 0

s1s0

TD

K-map for n1

00 01 11 10

00 0 0 1 1

01 1 1 1 0

11 1 1 0 0

10 0 0 0 0

s1s0

TD

K-map for n0

Gate-Level Circuit with Binary Encoding

s1 s0 T D n1 n0

0 0 1 - 0 1

0 1 1 0 1 0

0 1 1 1 1 1

1 0 1 - 0 0

1 1 1 - 1 0

x y 0 - x y

00 01 11 10

00 0 0 0 0

01 0 0 1 1

11 1 1 1 1

10 1 1 0 0

s1s0

TD

K-map for n1

00 01 11 10

00 0 0 1 1

01 1 1 1 0

11 1 1 0 0

10 0 0 0 0

s1s0

TD

K-map for n0

n1 = s0 T + s1 T’ n0 = s0 T’ + s1’ T D + s0’ s1’ T

Gate-Level Circuit with Binary Encoding

n1 = s0 T + s1 T’ n0 = s0 T’ + s1’ T D + s0’ s1’ T
 = s0 T’ + s1’ T (D + s0’)

One-hot Encoding

● state 0 = 0001 (Initial)
● state 1 = 0010 (Wash)
● state 2 = 0100 (Spin)
● state 3 = 1000 (Wash2)

State assignment doesn’t really matter in one-hot encoding

Verilog with One-hot Encoding
module washing_machine_onehot(input clk, rst, T, D);
 wire [3:0] next_state, state;
 REGISTER_R #(.N(4)) state_reg (.q(state),
.d(next_state), .rst(rst), .clk(clk));

 assign next_state[0] = (state[0] & ~T) |
 (state[2] & T);
 assign next_state[1] = (state[1] & ~T) |
 (state[0] & T);
 assign next_state[2] = (state[2] & ~T) |
 (state[1] & T & ~D) |
 (state[3] & T);
 assign next_state[3] = (state[3] & ~T) |
 (state[1] & T & D);
endmodule

Initial

WashSpin

Wash2

TT

T

T & ~D

T & D

~T

~T~T

~T

Focus on incoming edges for each node

Gate-Level Circuit with One-hot Encoding

 assign next_state[0] = (state[0] & ~T) |
 (state[2] & T);
 assign next_state[1] = (state[1] & ~T) |
 (state[0] & T);
 assign next_state[2] = (state[2] & ~T) |
 (state[1] & T & ~D) |
 (state[3] & T);
 assign next_state[3] = (state[3] & ~T) |
 (state[1] & T & D);

