EECS 151 Disc 3

 Rahul Kumar (session 1)Yukio Miyasaka (session 2)

Contents

- Parallel to Serial Converter
- FPGA
- Boolean Algebra
- Karnaugh Maps
- DeMorgan's Law

Parallel to Serial Converter

Reads input on a positive clock edge if Id is 1


```
module ParToSer (ld, x, out, clk);
    input [3:0] x;
    input ld, clk;
    output out;
    wire [3:0] q, d;
    REGISTER #(.N(4))
        r(.q(q), .d(d), .clk(clk));
    assign d=ld? x: {Q[0], Q[3:1]};
    assign out = q[0];
```

endmodule

FPGA

Berkeley

Logic Block

- Contains LUTs and FFs
- FFs are attached at the output of LUTs
- Configuration bits are stored in shift register
- In this case, registers are chained in the ascending order of input

A6	A5	A4	A3	A2	D
0	0	0	0	0	1
0	0	0	0	1	0
0	0	0	1	0	1
		\cdots			
1	1	1	0	1	0
1	1	1	1	0	0
1	1	1	1	1	1

Routing Switches

- Logic block input/output is connected to wires through a single transistor
- Makes a turn in switch matrix
- No matter if it makes a turn or not, a signal passes through one transistor in switch matrix
- Some FPGAs have double lines which skip every other switch matrix

Berkeley

Critical Path Delay

- Assume every gate has same delay for now
- The delay of the slowest path is called critical path delay

Critical Path Delay

- Assume every gate has same delay for now
- The delay of the slowest path is called critical path delay

Boolean Algebra

Postulates

- $a+0=a \quad(a * 1=a)$
- $a+a^{\prime}=1 \quad\left(a^{*} a^{\prime}=0\right)$
- Commutative law $a b=b a$
- Distributive law $a(b+c)=a b+b c, \quad a+(b c)=(a+b)(a+c)$

Theorems

- $\quad a+a=a \quad(a * a=a)$
- $a+1=1 \quad(a * 0=0)$
- (a')' = a
- Associative law $a(b c)=(a b) c$

Practice

$$
x+x y=?
$$

Practice

$$
x+x y=x * 1+x y
$$

Practice

$x+x y=x * 1+x y=x(1+y)=x * 1=x$

Hard to find the first step
Massage it by generating 1 (or 0) randomly

K-map

- Simple way to crate a small SOP
- Fill cells according to the truth table
- Group as many ones as possible
- Groups can overlap
- Extract products
- Sum them up

a b c d	x	cd				
				01	11	10
0001	0	00	0	0	0	0
....		01	0	0	0	1
1101	0					
1110	1	11	1	0	0	1
1111	1	10	1	0	0	1

K-map

Group size must be $(2 \wedge n, 2 \wedge m)$

- Simple way to crate a small SOP
- Fill cells according to the truth table
- Group as many ones as possible
- Groups can overlap
- Extract products
- Sum them up

a b c d x		cd				
	$\frac{x}{10}$		00	01	11	10
0001	0	00	0	0	0	0
$\begin{array}{ccc}0 & 0 & 1 \\ & \ldots\end{array}$	0 ab	01	0	0	0	1
1101	0		\bigcirc			\sim
1110	1	11	1	0	0	1
111	1	10	1	0	0	1

K-map

Group size must be ($2 \wedge \mathrm{n}, 2 \wedge \mathrm{~m}$)

- Simple way to crate a small SOP
- Fill cells according to the truth table
- Group as many ones as possible
- Groups can overlap
- Extract products
- Sum them up

Berkeley

K-map with Don't-cares

- Some functions have limited input space
- They can output arbitrary values outside

K-map with Don't-cares

Which is better?

K-map with Don't-cares

Which is better? - Depends on implementation.

DeMorgan's Law

$(a+b)^{\prime}=a^{\prime} b^{\prime}$

$$
(a b)^{\prime}=a^{\prime}+b^{\prime}
$$

"Bubble pushing": flip the gate, propagate the bubbles.
We can freely generate two consecutive bubbles anywhere.

