
EECS 151 Disc 3
Rahul Kumar (session 1)

Yukio Miyasaka (session 2)

Contents

● Parallel to Serial Converter
● FPGA
● Boolean Algebra
● Karnaugh Maps
● DeMorgan's Law

Parallel to Serial Converter
module ParToSer (ld, x, out, clk);
 input [3:0] x;
 input ld, clk;
 output out;
 wire [3:0] q, d;

 REGISTER #(.N(4))
 r(.q(q), .d(d), .clk(clk));
 assign d = ld? x: {Q[0], Q[3:1]};
 assign out = q[0];

endmodule

Reads input on a positive clock edge if ld is 1

clk

ld

x

q

4’b1010

4’b1010 4’b0101

FPGA

Logic Block

● Contains LUTs and FFs
● FFs are attached at the

output of LUTs
● Configuration bits are

stored in shift register
● In this case, registers are

chained in the ascending
order of input

A6 A5 A4 A3 A2 D
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 1

…
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 1

Next LUT

Routing Switches

● Logic block input/output is
connected to wires through a
single transistor

● Makes a turn in switch matrix
● No matter if it makes a turn

or not, a signal passes
through one transistor in
switch matrix

● Some FPGAs have double
lines which skip every other
switch matrix

Critical Path Delay

● Assume every gate has same delay for now
● The delay of the slowest path is called critical path delay

What is critical path delay in this circuit?

Critical Path Delay

● Assume every gate has same delay for now
● The delay of the slowest path is called critical path delay

What is critical path delay in this circuit?

Critical path delay is 3
from a (and b) to Cout

Boolean Algebra

Postulates
● a + 0 = a (a * 1 = a)
● a + a’ = 1 (a * a’ = 0)
● Commutative law ab = ba
● Distributive law a(b + c) = ab + bc, a+(bc) = (a + b)(a + c)

Theorems
● a + a = a (a * a = a)
● a + 1 = 1 (a * 0 = 0)
● (a’)’ = a
● Associative law a(bc) = (ab)c

Practice

x + xy = ?

Practice

x + xy = x * 1 + xy

Practice

x + xy = x * 1 + xy = x(1 + y) = x * 1 = x

Hard to find the first step

Massage it by generating 1 (or 0) randomly

K-map

● Simple way to crate a small SOP
● Fill cells according to the truth table
● Group as many ones as possible
● Groups can overlap
● Extract products
● Sum them up

00 01 11 10

00 0 0 0 0

01 0 0 0 1

11 1 0 0 1

10 1 0 0 1

a b c d x
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0

…
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

ab

cd

K-map

● Simple way to crate a small SOP
● Fill cells according to the truth table
● Group as many ones as possible
● Groups can overlap
● Extract products
● Sum them up

00 01 11 10

00 0 0 0 0

01 0 0 0 1

11 1 0 0 1

10 1 0 0 1

a b c d x
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0

…
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

ab

cd

Group size must be (2^n, 2^m)

K-map

● Simple way to crate a small SOP
● Fill cells according to the truth table
● Group as many ones as possible
● Groups can overlap
● Extract products
● Sum them up

00 01 11 10

00 0 0 0 0

01 0 0 0 1

11 1 0 0 1

10 1 0 0 1

a b c d x
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0

…
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

ab

cd

ad’

bcd’

= ad’ + bcd’

Group size must be (2^n, 2^m)

K-map with Don’t-cares

● Some functions have limited input space
● They can output arbitrary values outside

00 01 11 10

00 0 - - -

01 0 - - -

11 - 1 - 1

10 0 - - -

a b c d x
0 0 0 0 0
0 0 0 1 -
0 0 1 0 -

…
1 1 0 1 1
1 1 1 0 1
1 1 1 1 -

ab

cd

K-map with Don’t-cares

00 01 11 10

00 0 - - -

01 0 - - -

11 - 1 - 1

10 0 - - -

ab

cd

00 01 11 10

00 0 - - -

01 0 - - -

11 - 1 - 1

10 0 - - -

ab

cd

Which is better?

K-map with Don’t-cares

00 01 11 10

00 0 - - -

01 0 - - -

11 - 1 - 1

10 0 - - -

ab

cd

00 01 11 10

00 0 - - -

01 0 - - -

11 - 1 - 1

10 0 - - -

ab

cd

Which is better? - Depends on implementation.

ab c + d

DeMorgan's Law

(a + b)’ = a’b’ (ab)’ = a’ + b’

“Bubble pushing”: flip the gate, propagate the bubbles.

We can freely generate two consecutive bubbles anywhere.

