EECS 151 Disc 2
(Verilog Tutorial)

Rahul Kumar (session 1)
Yukio Miyasaka (session 2)

Contents

Overview
Combinational Logic
Sequential Logic
Generators
Simulation

Acknowledgement: Some materials were taken from EECS 151 sp21/fa22 discussion 2 slides

Berkeley

UNIVERSITY OF CALIFORNIA

Hardware Description Language (HDL)

e Standard for describing and rrisdliiEy ¥
representing digital systems '=// %D’
e Contains all information necessary — z: -
to build entire digital system S — E
[D
e Apply RTL abstraction for = S
combinational and state elements
e We use Verilog in this class ook~ -4pab~ Db~
> >

Clock

Berkeley

UNIVERSITY OF CALIFORNIA

Verilog Basics

Not a programming language!

e C-like syntax
e However, we’re writing a description of hardware
e All elements are working concurrently

Combinational Logic

Combinational logic ——" L ;
e Output updates (almost*) — 1 %D’
immediately with input — . 5
e Just because something is assigned — iz
at a later line doesn’t mean it runs \\\
later! - '

(*) There are some tricky things when
doing simulation

Clock

Berkeley

UNIVERSITY OF CALIFORNIA

Inputs, Outputs, Wires, and Regs

Signals in Verilog are of 2 flavors
e wire
e reg

|/Os declared at beginning of module
e Followed by signal types
o wire [default] / reg
e inputreg doesn’t make sense

Internal wires and regs declared after
e Not visible outside module

Berkeley

UNIVERSITY OF CALIFORNIA

module Example (a, b, ¢, status, s);
input a;
input b;
input c;
output reg status;
output s;

wire internal_1;
reg internal_2;

endmodule

Inputs, Outputs, Wires, and Regs

Signals in Verilog are of 2 flavors
e wire
e reg

|/Os declared at beginning of module
e Followed by signal types
o wire [default] / reg
e inputreg doesn’t make sense

Internal wires and regs declared after
e Not visible outside module

Berkeley

UNIVERSITY OF CALIFORNIA

module Example (a, b, ¢, status, s);

input a;
input b;
input c;
output reg staf
output s;

wire internal_]
reg internal_2

endmodule

module Example (Alternative

input a,

input b,

input c,

output reg status,
output s

wire internal_1;
reg internal_2;

endmodule

Multi-Bit Signals

Width of multi-bit signals are declared module Example2 (a, b, ¢, d, e);

between type and name input [3:0] a;

: _ _ input [1:0] b, ¢;

e By convention we use [Width-1:0] output [1:0] d. e

e We can declare multiple signals
after type and width assign d[0] = a[0];

assign d[1] = b[1];

e We can extract a bit or a range .
g assign e = al[2:1] & ¢;

using [i] or [i: j]

endmodule

Berkeley

UNIVERSITY OF CALIFORNIA

Wire vs. Reg

wire reg

e Continuous assignment °

wire internal; °
assign internal = a & b;

e Output of instances (structural Verilog)

wire internal;
and (internal, a, b);

Both can be used as input

Berkeley

UNIVERSITY OF CALIFORNIA

These are not actual registers!!!
Signals in always blocks must be reg

reg internal;

always @(¥)
internal = a & b;

Used in Behavioral Verilog except
when using continuous assignment

of operators/instances

The always @(*) Block

e Used to describe combinational
logic in the behavioral Verilog

e We can use various statements
inside, such as if, case, etc.

e begin-end is equivalent to {-} in C
o Necessary to put more than
one statements

Berkeley

UNIVERSITY OF CALIFORNIA

module Example3 (a, b, s, out);
input a, b, s;
output reg out;

always @(*) begin
if (s) begin
out = a;
end else begin
out = b;
end
end
endmodule

Multiple Assignment

e Cannot continuously assign wire to °
two other wires
assign a = b;

. IS IS 1| 1
assign a = ¢ This is illegal!

e (Can assign different values to reg
at different points in block

always @(*) begin
a=b;
a=g

This is okay.

a=_~cC.
end

Berkeley

UNIVERSITY OF CALIFORNIA

Compilers interpret it and use the
last value to generate hardware

o Previous values are overwritten
Useful to handle complex conditions

always @(*) begin
out = b;
if (s) begin
out = g;
end
end

Inferred Latches

How does this example work?

(Note: {a, b} is concatenation)

Berkeley

UNIVERSITY OF CALIFORNIA

module Example4 (a, b, out);
input a, b;
output reg out;

always @(*) begin
case ({a, b})
2’b01: out = 1;
2’b10: out = 1;
endcase
end
endmodule

Inferred Latches

This is not XOR!
e The output will hold a value if there
is no matching cases
e Once 2’b10 or 2’b01 happen, the
output will stay 1 forever

Make sure all regs are assigned a value
for all cases

(Same thing happens when using if
statements and not covering all cases)

Berkeley

UNIVERSITY OF CALIFORNIA

module Example4 (a, b, out);
input a, b;
output reg out;

always @(*) begin

case ({a, b})
2’b01: out = 1;
2’b10: out = 1;
endcase
end
endmodule

Sequential Logic

In this class, we use a register library module REGISTER_R_CE(q, d, rst, ce, clk);
parameter N = 1;
Whenever you need a register, you have to | parameter INIT = {N{1'bO};
instantiate one from the library output reg [N-1:0] q;
input [N-1:0] d;
Specification: input rst, ce, clk;
e Stores an N-bit value initial g = INIT;
e Outputs the value as q always @(posedge clk)
e At each positive edge of clk, if (rst) g <= INIT;
o Resets to INIT if rst else if (ce) q <= d;
o Updates to d if Irst & ce endmodule

o Hold the value otherwise

Berkeley

UNIVERSITY OF CALIFORNIA

wire [40] f, Usage

Genel'atOI'S wire g;

naryand #(.N(5)) and5(.in(f), .out(g));

Receives a parameter and creates module naryand (in, out);
various instances parameter N = 1;
input [N-1:0] in;
We can use for loops output out:
e Loop variables must be genvar wire [N-1:0] tmp:
when creating instances or always buf(tmp[0], in[0]);
blocks inside buf(out, tmp[N-1]):
e (We can use integer in other genvar i:
places) generate for(i=1;i<N;i=i+ 1) begin:ands
Parameters are given between module and(tmpl[i], infi], tmp[i-1]);
name and instance name with #() end endgenerate
endmodule

Berkeley

UNIVERSITY OF CALIFORNIA

Example: Shift-Register

out[0]

1 0
| |

1 0
| |

out[1]

ce rst

in —{D reg QD reg Q

ce rst

0
clk

Berkeley

UNIVERSITY OF CALIFORNIA

0
clk

10

ce rst

D reg Q

— out[N-1]

clk

module shift_register(clk, in, out);
parameter N = 1;
input clk, in;
output [N-1:0] out;
wire [N-1:0] tmp;

REGISTER_R_CE #(.N(N))
r(.q(out), .d(tmp), .rst(0), .ce(1), .clk(clk));

assign tmp = {out, in};
endmodule

Example: Shift-Register

module shift_register(clk, in, out);
parameter N = 1;

out[0] out[1] input clk, in; module shift_register Alternative
10 10 10 output [N-1:0] out; #(parameter N = 1)
Tk Ik Tk wire [N-1:0] tmp; (clk, in, out);
in —D reg Q D reg Q eee —D reg Q out[N-1] input clk, in;
| La A ot oo b
clk clk clk

assign tmp = {out, in};
endmodule

Berkeley

UNIVERSITY OF CALIFORNIA

Simulation

What’s a Testbench?

e Description of tests to verify that

designs behave as specified Testbench

e Generate input to drive designs
Stimulus Checker

e Compare output against expected

values T
Input Output
Vectors Vectors
5 Device Under Test J
(DUT)

Berkeley

UNIVERSITY OF CALIFORNIA

Testbench Structure

Testbenches are also written in Verilog
e wire for test output
e reg for test input and others

initial blocks
e Used only for the purpose of
simulation

e No hardware implementation

Simulation commands
e Sdumpfile(dump.vcd); Sdumpvars;
generates a waveform
e Sfinish(); ends simulation

Berkeley

UNIVERSITY OF CALIFORNIA

module my_tb;
reg in;
wire out;
reg expected;

DUT dut(.in(in), .out(out));

initial begin
Sdumpfile("dump.ved");
Sdumpvars;
/* Drive inputs and check here ¥
Sfinish();
end
endmodule

Printing Signals

Sdisplay("format string", values);
e Example: Sdisplay("in: %b, out: %b, expected: %b", in, out, expected);

%d or %D Decimal format

%b or %B Binary format

%h or %H Hexadecimal format
%0 or %0 Octal format

%c or %C ASCII character format
%vV or %V Net signal strength
%m or %M Hierarchical name

%s or %S As a string

%t or %T Current time format

Berkeley

UNIVERSITY OF CALIFORNIA

Simulation Order

In simulation, DUT output may not update immediately
e Why? - Simulator may execute next line in testbench before
e The execution order is arbitrary

How can we get it updated?
e Simulation timestep advances after executing all waiting updates

e Delay testbench by #num after changing input
e |t postpones the execution of the current sequence by num timesteps

Berkeley

UNIVERSITY OF CALIFORNI,

Example: OAI 2 AND out

c——I 7

EDA Playground (https://www.edaplayground.com/)
e Free web-based simulator

Built-in waveform viewer

HIGHLY recommended for this homework!

(Select Icarus Verilog 0.9.7 for simulator)

OAl design and testbench:
https://www.edaplayground.com/x/Egiz

Berkeley

UNIVERSITY OF CALIFORNIA

https://www.edaplayground.com/
https://www.edaplayground.com/x/Egiz

Testing Sequential Circuits

module my_tb;

Clock signal reg clk;

e Initializedto O initial clk = O:

e always #1 flips it every timestep always #1 clk = ~clk:
task block

task check; begin
#2;
if(out == expected) begin
Sdisplay("FAILED");
Sfinish();
end
end endtask

e Defines a procedure

e Can be called from anywhere in
testbench

e task check advances simulation by
two timesteps, and compare output
with expected values

e Why two timesteps?

Berkeley

UNIVERSITY OF CALIFORNIA

Example: Shift-Register

https://www.edaplayground.com/x/jrmg

*Disregard the warning about timescale for now.

https://www.edaplayground.com/x/jrmq

