
EECS 151 Disc 2
(Verilog Tutorial)

Rahul Kumar (session 1)
Yukio Miyasaka (session 2)

Contents

● Overview
● Combinational Logic
● Sequential Logic
● Generators
● Simulation

Acknowledgement: Some materials were taken from EECS 151 sp21/fa22 discussion 2 slides

Hardware Description Language (HDL)

● Standard for describing and
representing digital systems

● Contains all information necessary
to build entire digital system

● Apply RTL abstraction for
combinational and state elements

● We use Verilog in this class

Verilog Basics

Not a programming language!

● C-like syntax
● However, we’re writing a description of hardware
● All elements are working concurrently

Combinational Logic

Combinational logic
● Output updates (almost*)

immediately with input
● Just because something is assigned

at a later line doesn’t mean it runs
later!

(*) There are some tricky things when
doing simulation

Inputs, Outputs, Wires, and Regs

module Example (a, b, c, status, s);
input a;
input b;
input c;
output reg status;
output s;

wire internal_1;
reg internal_2;

…
endmodule

Signals in Verilog are of 2 flavors
● wire
● reg

I/Os declared at beginning of module
● Followed by signal types

○ wire [default] / reg
● input reg doesn’t make sense

Internal wires and regs declared after
● Not visible outside module

Inputs, Outputs, Wires, and Regs

module Example (a, b, c, status, s);
input a;
input b;
input c;
output reg status;
output s;

wire internal_1;
reg internal_2;

…
endmodule

module Example (
input a,
input b,
input c,
output reg status,
output s

);

wire internal_1;
reg internal_2;

…
endmodule

Alternative

Signals in Verilog are of 2 flavors
● wire
● reg

I/Os declared at beginning of module
● Followed by signal types

○ wire [default] / reg
● input reg doesn’t make sense

Internal wires and regs declared after
● Not visible outside module

Multi-Bit Signals

Width of multi-bit signals are declared
between type and name

● By convention we use [Width-1:0]

● We can declare multiple signals
after type and width

● We can extract a bit or a range
using [i] or [i: j]

module Example2 (a, b, c, d, e);
input [3:0] a;
input [1:0] b, c;
output [1:0] d, e;

assign d[0] = a[0];
assign d[1] = b[1];
assign e = a[2:1] & c;

…
endmodule

Wire vs. Reg

wire

● Continuous assignment

● Output of instances (structural Verilog)

reg

● These are not actual registers!!!
● Signals in always blocks must be reg

● Used in Behavioral Verilog except
when using continuous assignment

wire internal;
assign internal = a & b; reg internal;

always @(*)
internal = a & b;

wire internal;
and (internal, a, b);

Both can be used as input of operators/instances

The always @(*) Block

● Used to describe combinational
logic in the behavioral Verilog

● We can use various statements
inside, such as if, case, etc.

● begin-end is equivalent to {-} in C
○ Necessary to put more than

one statements

module Example3 (a, b, s, out);
input a, b, s;
output reg out;

always @(*) begin
if (s) begin

out = a;
end else begin

out = b;
end

end
endmodule

Multiple Assignment

● Cannot continuously assign wire to
two other wires

This is illegal!

● Can assign different values to reg
at different points in block

This is okay.
a = c.

● Compilers interpret it and use the
last value to generate hardware
○ Previous values are overwritten

● Useful to handle complex conditions
assign a = b;
assign a = c;

always @(*) begin
a = b;
a = c;

end

always @(*) begin
out = b;
if (s) begin

out = a;
end

end

Inferred Latches

How does this example work?

(Note: {a, b} is concatenation)

module Example4 (a, b, out);
input a, b;
output reg out;

always @(*) begin
case ({a, b})
2’b01: out = 1;
2’b10: out = 1;
endcase

end
endmodule

Inferred Latches

This is not XOR!
● The output will hold a value if there

is no matching cases
● Once 2’b10 or 2’b01 happen, the

output will stay 1 forever

Make sure all regs are assigned a value
for all cases
(Same thing happens when using if
statements and not covering all cases)

module Example4 (a, b, out);
input a, b;
output reg out;

always @(*) begin
case ({a, b})
2’b01: out = 1;
2’b10: out = 1;
endcase

end
endmodule

Sequential Logic

In this class, we use a register library

Whenever you need a register, you have to
instantiate one from the library

Specification:
● Stores an N-bit value
● Outputs the value as q
● At each positive edge of clk,

○ Resets to INIT if rst
○ Updates to d if !rst & ce
○ Hold the value otherwise

module REGISTER_R_CE(q, d, rst, ce, clk);
 parameter N = 1;
 parameter INIT = {N{1'b0}};
 output reg [N-1:0] q;
 input [N-1:0] d;
 input rst, ce, clk;
 initial q = INIT;
 always @(posedge clk)
 if (rst) q <= INIT;
 else if (ce) q <= d;
endmodule

Generators

Receives a parameter and creates
various instances

We can use for loops
● Loop variables must be genvar

when creating instances or always
blocks inside

● (We can use integer in other
places)

Parameters are given between module
name and instance name with #()

module naryand (in, out);
parameter N = 1;
input [N-1:0] in;
output out;
wire [N-1:0] tmp;
buf(tmp[0], in[0]);
buf(out, tmp[N-1]);
genvar i;
generate for(i = 1; i < N; i = i + 1) begin : ands

and(tmp[i], in[i], tmp[i-1]);
end endgenerate

endmodule

wire [4:0] f;
wire g;
naryand #(.N(5)) and5(.in(f), .out(g));

Usage

Example: Shift-Register

module shift_register(clk, in, out);
 parameter N = 1;
 input clk, in;
 output [N-1:0] out;
 wire [N-1:0] tmp;

 REGISTER_R_CE #(.N(N))
 r(.q(out), .d(tmp), .rst(0), .ce(1), .clk(clk));

 assign tmp = {out, in};
endmodule

Example: Shift-Register

module shift_register(clk, in, out);
 parameter N = 1;
 input clk, in;
 output [N-1:0] out;
 wire [N-1:0] tmp;

 REGISTER_R_CE #(.N(N))
 r(.q(out), .d(tmp), .rst(0), .ce(1), .clk(clk));

 assign tmp = {out, in};
endmodule

module shift_register
#(parameter N = 1)
(clk, in, out);

 input clk, in;
…

Alternative

Simulation

What’s a Testbench?

● Description of tests to verify that
designs behave as specified

● Generate input to drive designs

● Compare output against expected
values

Testbench Structure

Testbenches are also written in Verilog
● wire for test output
● reg for test input and others

initial blocks
● Used only for the purpose of

simulation
● No hardware implementation

Simulation commands
● $dumpfile(dump.vcd); $dumpvars;

generates a waveform
● $finish(); ends simulation

module my_tb;
 reg in;
 wire out;
 reg expected;

 DUT dut(.in(in), .out(out));

 initial begin
 $dumpfile("dump.vcd");
 $dumpvars;
 /* Drive inputs and check here */
 $finish();
 end
endmodule

Printing Signals

$display("format string", values);
● Example: $display("in: %b, out: %b, expected: %b", in, out, expected);

Simulation Order

In simulation, DUT output may not update immediately
● Why? - Simulator may execute next line in testbench before
● The execution order is arbitrary

How can we get it updated?
● Simulation timestep advances after executing all waiting updates

● Delay testbench by #num after changing input

● It postpones the execution of the current sequence by num timesteps

Example: OAI

EDA Playground (https://www.edaplayground.com/)
● Free web-based simulator
● Built-in waveform viewer
● HIGHLY recommended for this homework!
● (Select Icarus Verilog 0.9.7 for simulator)

OAI design and testbench:
https://www.edaplayground.com/x/Egiz

https://www.edaplayground.com/
https://www.edaplayground.com/x/Egiz

Testing Sequential Circuits

Clock signal
● Initialized to 0
● always #1 flips it every timestep

task block
● Defines a procedure
● Can be called from anywhere in

testbench
● task check advances simulation by

two timesteps, and compare output
with expected values

● Why two timesteps?

module my_tb;
…
 reg clk;
 initial clk = 0;
 always #1 clk = ~clk;
…
 task check; begin
 #2;
 if(out !== expected) begin
 $display("FAILED");
 $finish();
 end
 end endtask

…

Example: Shift-Register

https://www.edaplayground.com/x/jrmq

*Disregard the warning about timescale for now.

https://www.edaplayground.com/x/jrmq

