EECS 151 Disc 11

 Rahul Kumar (session 1) Yukio Miyasaka (session 2)
Contents

- Adder
- Multiplier

Ripple Carry Adder

Carry Select Adder

Carry Look-ahead Adder

Berkeley

Parallel Prefix Adder

Berkeley

Array Multiplier

Berkeley

Carry Save Adder

Wallace Tree

See Disc 12ásideo $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

//

L000.0.0

$$
\bigcirc \bigcirc
$$

$$
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
$$

CPA

Berkeley

Signed Multiplication

Booth Multiplier (Radix 4)

- Reduce \#partial-products by looking at 2 bits (actually 3) at a time.
- We don't want to add $A * 3$, so sub A and then add $4 * A$ in the next partial product.
- We also need to sub $2 * \mathrm{~A}$ instead of add $2 * \mathrm{~A}$ to cancel the side-effect.
- Magically, Booth multiplier works for signed multiplication just by sign-extending the multiplier (B).
- Can use the optimization in the previous page for sign-extended partial products.

B_{K+1}	B_{K}	B_{K-1}	action
0	0	0	$\operatorname{add} 0$
0	0	1	$\operatorname{add} A$
0	1	0	$\operatorname{add} A$
0	1	1	$\operatorname{add} 2^{\star} A$
1	0	0	sub $2^{\star} A$
1	0	1	sub A
1	1	0	sub A
1	1	1	add 0

Berkeley

Practice Problems

(Taken from HW in previous semesters)

Radix-4 Kogge-Stone Adder

Recall from the lecture that Kogge-Stone adder is a parallel prefix form carry look-ahead adder (CLA). In this problem, we'd like to design and analyze a 16 -bit radix- 4 Kogge-Stone adder.
(a) Write down the Boolean functions of the gate implementation of following building blocks for the radix-4 Kogge-Stone adder. You may use $A N D, O R$ and $X O R$ only. Also, how should you handle cases where certain 4-input prefix cells have fewer than 4 pairs of input?

Radix-4 Kogge-Stone Adder

$$
\begin{array}{ll}
\text { Pre-processing: } & G_{i}=A_{i} B_{i}, \quad P_{i}=A_{i} \oplus B_{i} \\
\text { 4-input prefix: } & G_{l: i}=G_{l}+\left(P_{l}\left(G_{k}+\left(P_{k}\left(G_{j}+P_{j} G_{i}\right)\right)\right)\right) \\
& P_{l: i}=P_{l} P_{k} P_{j} P_{i} \\
\text { Post-processing: } & S_{i}=P_{i} \oplus G_{i-1: 0}
\end{array}
$$

Radix-4 Kogge-Stone Adder

(b) Which of the following are true for radix-4 Kogge-Stone adder?
__ Compared to Radix-2 adders, Radix-4 adders reduce the depth of the tree by a factor of 4 (excluding the input and output stages).
__ An N-bit Radix-4 adders has $\mathcal{O}\left(\sim \log _{4}(N)\right)$ in time.
__It is possible to implement a 32-bit Kogge-Stone adder using only the building blocks in part (a).

Radix-4 Kogge-Stone Adder

F. Radix- 4 adders reduce the depth by a factor of 2 .
T. But do keep in mind that each stage takes longer time.
T. You might need to leave some intermediate P,G outputs unconnected, though.

Radix-4 Kogge-Stone Adder

(c) Suppose given the following propagation delays:

$$
t_{A N D}=5 p s, \quad t_{O R}=4 p s, \quad t_{X O R}=7 p s
$$

Derive the critical path of the 16 -bit Kogge-Stone adder based on your implementation in part (a), ignoring the delays in routing. (Hint: If you are not sure about the topology, take a look at the slides in Lecture 19.)

16-bit radix-4 Kogge-Stone Tree

Berkeley

Radix-4 Kogge-Stone Adder

The longest path will go through: 1 pre-processing cell +2 four-input prefix cells +1 post-processing cell. So the total delay is:

$$
\begin{aligned}
t_{\text {critical }} & =\max \{5 p s, 7 p s\}+2 \times(5 p s+4 p s+5 p s+4 p s+5 p s+4 p s)+7 p s \\
& =7 p s+2 \times 27 p s+7 p s \\
& =68 p s
\end{aligned}
$$

Radix-4 Kogge-Stone Adder

(e) (251A Only) In reality, those prefix cells will not be built using the basic 2-input AND, OR, XOR gates. Instead, they will be built as a big CMOS gate (and inverters). Draw the schematic of the 4 -input prefix cell for $\bar{G}_{l: i}$ and $\bar{P}_{l: i}$ respectively with the minimum number of transistors.

Radix-4 Kogge-Stone Adder

Booth Multiplication

Refer to the following table of the behavior of Booth recoding.
Answer should be in the format of:

B_{K+1}	B_{K}	B_{K-1}	Action
0	0	0	add 0
0	0	1	add A
0	1	0	add A
0	1	1	add 2A
1	0	0	sub 2A
1	0	1	sub A
1	1	0	sub A
1	1	1	add 0

$$
\begin{array}{rl}
\text { Suppose } A=1010 & B=1001 \\
(B[1:-1]=010): & \text { add } A \\
(B[3: 1]=100): & \text { sub } 2 A \\
& \ldots \\
\text { result } & =A-(A \ll 2)+\ldots \\
& =0000(1010)-00(1010) 00+\ldots \\
& =\ldots
\end{array}
$$

Write down the sequence of operation and the final result given the following unsigned two input numbers:

Booth Multiplication

```
(B[1:-1]=100): sub 2A,
(B[3: 1]=001): add A,
(B[5: 3]=110): sub A,
(B[7: 5]=101): sub A,
(B[9: 7]=001): add A
    result =-(2A)+(A<<2)-( A<<4)-(A<<6)+(A<<8)
    =-0000000(01100111)0+000000(01100111)00
    - 0000(01100111)0000-00(01100111)000000
    +(01100111)00000000
    = 0100 0111 1001 1110 (18334 in decimal)
```

