
EECS 151 Disc 1
Rahul Kumar (session 1)

Yukio Miyasaka (session 2)

About Me

Contents

● Moore’s law & Dennard scaling
● Pareto optimality
● Die cost
● Design alternatives (ASIC, FPGA, Processor)
● Logic circuits
● LTSpice

Moore’s Law

4

● #transistors on microchips doubles every
two years (originally 1.5 years)

● Also serving as a milestone for device
engineers

● This itself does not mean processor
performance improvement … why?

Dennard Scaling
It is power that limits the processor performance: fans can dissipate only 100W

Dennard scaling

● Transistor dimensions: 1/k
○ Area: 1/k^2

● Voltage: 1/k (both Vdd and Vth)
○ Delay: 1/k
○ Power (per transistor): 1/k^2

■ Power / Area: 1 (constant)
● Same circuit -> Same #transistor

○ Power / Circuit: 1/k^2

5

End of Dennard Scaling
● Leakage power

○ Power calculation was based only on
switching power

○ We’ll talk about this after midterm
● Cure: Decrease only Vdd (not Vth)

○ Cancels frequency improvement!
● Countermeasure: Multi-core

○ High Vdd and high frequency when
using only one core

○ Low Vdd and low frequency when
using multiple cores

○ Through concurrent execution,
multi-core can overcome the
frequency decrease

6

Figure 1.11 from J. Hennessy and D. Patterson, “Computer Architecture: A Quantitative Approach 6th edition”

● IC design involves tradeoffs:
○ Performance, Power, Cost

● Performance is multi-dimensional:
○ Frequency
○ CPI (Cycles Per Instruction)
○ Number of cores
○ Functionality (AI accelerator?)

One is not pareto optimal if another is superior (or equivalent) in all criteria

Pareto Optimality

Example: Pareto optimality

Compare

Example: Pareto optimality

Compare

Wasting energy!

Slower for no reason!

Example: Pareto optimality

Die Cost

Logic Circuits

Combinational Logic

● Output is a pure function of inputs
● If an input changes, output changes

(almost) immediately
○ We’ll cover delay in future

● Represented by:
○ Logic gates
○ Truth table
○ Boolean expressions (later week)

Sequential Elements

● Registers/memories
● Remembers a state
● Clock tells when to read inputs and

update outputs

Example: Linear-Feedback Shift Register

● Write down a truth table from reg outputs to reg inputs
○ How many rows do we need?

● Simulate 5 cycles from (Q1, Q2, Q3, Q4) = (1, 0, 0, 0)

Truth Table

● 4 inputs -> 2^4 = 16 rows
● Except D2, D_i = Q_{i-1 mod 4}
● D2 = XOR(Q1, Q4)

Q4 Q3 Q2 Q1 D4 D3 D2 D1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 0 1 1 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 1 0
0 1 1 0 1 1 0 0
0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 1
1 0 0 1 0 0 0 1
1 0 1 0 0 1 1 1
1 0 1 1 0 1 0 1
1 1 0 0 1 0 1 1
1 1 0 1 1 0 0 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 1

Simulating LFSR
Q4 Q3 Q2 Q1 D4 D3 D2 D1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 0 1 1 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 1 0
0 1 1 0 1 1 0 0
0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 1
1 0 0 1 0 0 0 1
1 0 1 0 0 1 1 1
1 0 1 1 0 1 0 1
1 1 0 0 1 0 1 1
1 1 0 1 1 0 0 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 1

Cycle Q4 Q3 Q2 Q1 D4 D3 D2 D1

0 0 0 0 1
1
2
3
4
5

Simulating LFSR

● Copy the corresponding row

Q4 Q3 Q2 Q1 D4 D3 D2 D1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 0 1 1 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 1 0
0 1 1 0 1 1 0 0
0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 1
1 0 0 1 0 0 0 1
1 0 1 0 0 1 1 1
1 0 1 1 0 1 0 1
1 1 0 0 1 0 1 1
1 1 0 1 1 0 0 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 1

Cycle Q4 Q3 Q2 Q1 D4 D3 D2 D1

0 0 0 0 1 0 0 1 0
1
2
3
4
5

Simulating LFSR

● Copy the corresponding row
● Copy D’s to the next Q’s

Q4 Q3 Q2 Q1 D4 D3 D2 D1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 0 1 1 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 1 0
0 1 1 0 1 1 0 0
0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 1
1 0 0 1 0 0 0 1
1 0 1 0 0 1 1 1
1 0 1 1 0 1 0 1
1 1 0 0 1 0 1 1
1 1 0 1 1 0 0 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 1

Cycle Q4 Q3 Q2 Q1 D4 D3 D2 D1

0 0 0 0 1 0 0 1 0
1 0 0 1 0
2
3
4
5

Simulating LFSR

● Copy the corresponding row
● Copy D’s to the next Q’s

Q4 Q3 Q2 Q1 D4 D3 D2 D1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 0 1 1 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 1 0
0 1 1 0 1 1 0 0
0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 1
1 0 0 1 0 0 0 1
1 0 1 0 0 1 1 1
1 0 1 1 0 1 0 1
1 1 0 0 1 0 1 1
1 1 0 1 1 0 0 1
1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 1

Cycle Q4 Q3 Q2 Q1 D4 D3 D2 D1

0 0 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0
2 0 1 0 0 1 0 0 0
3 1 0 0 0 0 0 1 1
4 0 0 1 1 0 1 1 0
5 0 1 1 0 1 1 0 0

Circuit Implementation

Standard cell ASICs (most popular)

Standard cell ASICs
● EDA tools convert your design (eg. Verilog) to a layout (GDS)

○ Logic synthesis
■ Realize your design using library cells provided by the manufacturer
■ Cells are logic gates, registers, latches, etc.

○ Placement & Routing
■ Place the cells on the regular grid and connect them
■ Also deals with electrical properties such as capacity

● Other things that aren’t called standard cells, but you might import as hard
macros:
○ Memory blocks (eg. SRAM)
○ ESD protection
○ I/O drivers

Full-custom ASICs

● Actually, you can manually layout every transistor
○ Macro blocks are designed in this way

● But think how many transistors are used in modern processors
○ Can you manually handle one billion transistors?
○ Possible only when it is very simple or highly regular

● Your manual layout might cause electrical issues
○ Transistors and wires interact with each other electrically
○ Standard cells are carefully tested by the manufacturer so that tools can layout

them in a safer manner

Design alternatives
● ASICs are very expensive to develop:

○ Each die is cheap ($10) but the mask costs a lot ($100K~$1M)
○ Long verification before creating a mask, logically and electrically

● FPGAs
○ Available on the market ($100~$1K)
○ Compile, implement, and test in a day (up to a week for large designs)
○ However,

■ Lower performance and energy-efficiency (sacrificed for configurability)
■ Each die costs more than ASIC

● Processors (Software)
○ Sequential execution (easy to design)
○ Communication between functional units, register, and memory

■ Even lower performance and energy-efficiency

Electrical Properties of Transistor

Regenerative Gates

● Lots of noise/interference in large
digital system

● Digital logic must be robust to
noise/interference

● Why might this be a bad digital
buffer?

Regenerative Gates

● Digital gates should be
regenerative

● Small variations in inputs should be
suppressed

● How can you tell if noise is being
suppressed? Look at voltage
transfer characteristic (VTC).

SPICE

● Simulation Program with Integrated Circuit Emphasis
● Originally developed at Berkeley
● Many commercial and open source implementations:

○ Hspice, Ngspice, Spectre, LTspice
● Heavily used in analog design
● Used in designing/characterizing standard cells

○ “What is the delay of this inverter?”
● Not used for large digital circuits – too slow!

Schematic Entry

Need to tell the simulator about your circuit. Two options:

● Draw it in a GUI
● Write it in text format

Schematic Entry

●

Simulation Commands

● Tells the simulator what to simulate
○ op: find the DC operating point
○ dc: sweep a source, find the DC operating point at each value of the source
○ tran: time domain simulation; no linearization
○ Mostly relevant to analog design: ac, noise, pss, qpss, disto, etc.

● Add to your schematic

Viewing Output

● Run the simulation, then plot the output.
● Or, from command line: invoke simulator and print output

