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Moore’s Law

Moore's law: The number of transistors per microprocessor

Number of transistors which fit into a microprocessor. The observation that the number of transistors on an integrated
circuit doubles approximately every two years is called 'Moore's Law'.
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Source: Karl Rupp. 40 Years of Microprocessor Trend Data. CCBY
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#transistors on microchips doubles every
two years (originally 1.5 years)

Also serving as a milestone for device
engineers

This itself does not mean processor
performance improvement ... why?




Dennard Scaling

It is power that limits the processor performance: fans can dissipate only 100W

Dennard scaling

e Transistor dimensions: 1/k
o Area: 1/kA2
e Voltage: 1/k (both Vdd and Vth)
o Delay: 1/k
o Power (per transistor): 1/kA2
m Power / Area: 1 (constant)
e Same circuit -> Same #transistor

o Power / Circuit: 1/kA2
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End of Dennard Scaling

e Leakage power
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Pareto Optimality

"Pareto Optimal” Frontier

e
Want to be here ... //
but cant " 4

/ Diminishing

returns on
o performance
here

e |IC design involves tradeoffs: Performance
o Performance, Power, Cost (333‘:3/?‘-:‘:{
e Performance is multi-dimensional:
o Frequency

Diminishing °
returns on

o CPI (Cycles Per Instruction) cost here

o Number of cores Cost (# of components)
Want this to be low

o Functionality (Al accelerator?)

One is not pareto optimal if another is superior (or equivalent) in all criteria
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Example: Pareto optimality

fmaz | Energy | Cost
2.0 20 2.0
1.5 10 |
1.5 17 1.5
1.5 20 1.0
1.0 10 1.5

Compare

120 20 1.0




Example: Pareto optimality

fmaz | Energy | Cost
2.0 20 2.0

_ii 118 112 :> Compare
1.E 20 1.0 Wasting energy!
To———115 *

Slower for no reason!

1.0 20 1.0




Example: Pareto optimality

fmaz | Energy | Cost
2.0 20 2.0
1.5 10 |

“ 1.5 = L5
1.5 20 1.0

I 10 LE

1.0




Die Cost

die yield = (1 4 defects per unit area x die area]_“
o
Dies per wafer =~ (wafer diameter/2) ~ mx wafer diameter
die area V2 xdie area
Die cost — Wafer cost

Dies per wafer xDie yield




Logic Circuits




Combinational Logic

e Output is a pure function of inputs A ——
e If an input changes, output changes
(almost) immediately
o We’ll cover delay in future

AND Out

e Represented by:
o Logic gates
o Truth table
o Boolean expressions (later week)
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Sequential Elements

e Registers/memories

e Remembers a state

e Clock tells when to read inputs and CIOCk_>
update outputs
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Example: Linear-Feedback Shift Register

L 4
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e Write down a truth table from reg outputs to reg inputs
o How many rows do we need?
e Simulate 5 cycles from (Q1, Q2, Q3, Q4) = (1, 0, 0, 0)




Q4 Q3 Q2 Q1|D4 D3 D2 D1

Truth Table
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4 inputs -> 2A4 = 16 rows

Except D2, D_i = Q_{i-1 mod 4}
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Q4 Q3 Q2 Q1|D4 D3 D2 D1

0
0

Simulating LFSR
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Q4 Q3 Q2 Q1|D4 D3 D2 D1
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Simulating LFSR
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Q4 Q3 Q2 Q1|D4 D3 D2 D1

Simulating LFSR

Cycle|]Q4 Q3 Q2 Q1| D4 D3 D2 D1

0 0O 0 O 1 0 O 1 0
0 O 1 0

1
2
3
4
5

e Copy the corresponding row
e Copy D’s to the next Q’s
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Q4 Q3 Q2 Q1|D4 D3 D2 D1

0
0

Simulating LFSR

D4 D3 D2 D1

Cycle[]Q4 Q3 Q2 Q1

Copy the corresponding row
Copy D’s to the next Q’s
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Circuit Implementation




andard cell ASICs (most popular)
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Standard cell ASICs

e EDA tools convert your design (eg. Verilog) to a layout (GDS)
o Logic synthesis
m Realize your design using library cells provided by the manufacturer
m Cells are logic gates, registers, latches, etc.
o Placement & Routing
m Place the cells on the regular grid and connect them
m Also deals with electrical properties such as capacity
e Other things that aren’t called standard cells, but you might import as hard
macros:
o Memory blocks (eg. SRAM)
o ESD protection
o 1/0 drivers
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Full-custom ASICs

e Actually, you can manually layout every transistor
o Macro blocks are designed in this way
e But think how many transistors are used in modern processors
o Can you manually handle one billion transistors?
o Possible only when it is very simple or highly regular
e Your manual layout might cause electrical issues
o Transistors and wires interact with each other electrically

o Standard cells are carefully tested by the manufacturer so that tools can layout
them in a safer manner

Berkeley

UNIVERSITY OF CALIFORNIA




Design alternatives

e ASICs are very expensive to develop:
o Each die is cheap ($10) but the mask costs a lot ($100K~$1M)
o Long verification before creating a mask, logically and electrically
e FPGAs
o Available on the market ($100~$1K)
o Compile, implement, and test in a day (up to a week for large designs)
o However,
m Lower performance and energy-efficiency (sacrificed for configurability)
m Each die costs more than ASIC
e Processors (Software)
o Sequential execution (easy to design)
o Communication between functional units, register, and memory
m Even lower performance and energy-efficiency
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Electrical Properties of Transistor




Regenerative Gates

e Lots of noise/interference in large
digital system

e Digital logic must be robust to Vino .

noise/interference O Vour
e Why might this be a bad digital p— -

buffer?
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Regenerative Gates

Voul (V)

A

e Digital gates should be Vg —=2.0
regenerative

e Small variations in inputs should be
suppressed

e How can you tell if noise is being
suppressed? Look at voltage
transfer characteristic (VTC).

15

1.0
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SPICE

e Simulation Program with Integrated Circuit Emphasis

e Originally developed at Berkeley

e Many commercial and open source implementations:
o Hspice, Ngspice, Spectre, LTspice

e Heavily used in analog design

e Used in designing/characterizing standard cells
o “What is the delay of this inverter?”

e Not used for large digital circuits - too slow!
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Schematic Entry

Need to tell the simulator about your circuit. Two options:

e Draw itin a GUI
e Write it in text format




Schematic Entry

vdd

1K R1 vdd vout 1K
R2 vout 0 3k

V1

vout

Vdd vdd 0 dc 1

3k




Simulation Commands

e Tells the simulator what to simulate
o op: find the DC operating point
o dc: sweep a source, find the DC operating point at each value of the source
o tran: time domain simulation; no linearization
o Mostly relevant to analog design: ac, noise, pss, qpss, disto, etc.
e Add to your schematic

Berkeley

UNIVERSITY OF CALIFORNIA




Viewing Output

e Run the simulation, then plot the output.
e Or, from command line: invoke simulator and print output

Title: % voltage divider

Date: Thu Jan $59:45

Plotname: Operating Point

Flags: real

No. Variables:

No. Points:

Variables:
v(vdd) voltage
v(vout) voltage
i(vdd) current
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