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Agenda

o Overview of Recent Trends in ML for CAD/EDA

o Deeper Dive: ML-Driven Logic Synthesis Optimization
o Challenges in ML for CAD
e Research @ Berkeley on ML-CAD
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Overview of
Recent ML-CAD Research
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e Active research on applying ML (notably Deep

Learning) to each stage of EDA Ry Physic:, Design
e Each stage can have multiple tasks to target: T
o e.g.inP&R: DRC Physical Verification and
m Predict routing congestion = Sigf“
m Predict routing result — E—
o  Full or partial automation / ‘ T
o Improve optimization of i ' _ _
quality of results (QoR) e
e But also, ML for AMS Design W Ciip

Huang, Guyue, et al. "Machine learning for electronic design automation: A survey." ACM Transactions on Design
Automation of Electronic Systems (TODAES) 26.5 (2021)



Recent Trends: ML-CAD @ Industry

Google Research

The Potential of Machine pa—
Learning for Hardware Design

Can we learn to design chips *

in days or weeks? - i
'

Presenting the work of many people at Google, especially ®

David Bieber, Roger Carpenter, Anna Goldie, William Hang, Richard Ho, Safeen

Huda, Joe Jiang, Wenijie Jiang, Eric Johnson, James Laudon, Quoc Le,

Young-Joon Lee, Azalia Mirhoseini, Azade Nazi, Jiwoo Pak, Omkar Pathak, Kartik @
Prabhu, C. Richard Ho, Hamid Shojaei, Rishabh Singh, Ebrahim Songhori, Kavya

Srinivasa, Charles Sutton, Andy Tong, Emre Tuncer, Quoc V Le, Shobha ~ srrrrrrrerees
Vasudevan, Shen Wang, Mustafa Yazgan, and Dan Zhang, ~  treeeeeeee

Jeff Dean, Google Research, @JeffDean and ai.google/research/people/jeff

Google @DAC 2022

Machine Learning and
Algorithms: Let Us Team
Up for EDA

Haoxing Ren, Brucek Khailany Yanqing Zhang
NVIDIA Corporation, Austin, TX 78717 USA NVIDIA, Inc., Santa Clara, CA 95051 USA
Matthew Fojtik

NVIDIA, Durham, NC 27713 USA

Cadence
Intelligent Machines @DeSignCon
S ey s e 2023



Recent Trends: ML-CAD @ Academia

Functionality Matters in Netlist Representation Learning

Ziyi Wang Chen Bai Zhuolun He Guangliang Zhang
CUHK CUHK CUHK HiSilicon

Qiang Xu Tsung-Yi Ho Bei Yu Yu Huang
CUHK CUHK CUHK HiSilicon

Bulls-Eye: Active Few-shot Learning Guided Logic
Synthesis

Animesh Basak Chowdhury, Benjamin Tan, Member, IEEE, Ryan Carey, Tushit Jain, Ramesh Karri, Fellow,
IEEE, and Siddharth Garg

Developing Synthesis Flows Without Human Knowledge

Cunxi Yu Houping Xiao Giovanni De Micheli
Integrated Systems Laboratory, EPFL SUNY Buffalo Integrated Systems Laboratory, EPFL
Lausanne, Switzerland Buffalo, NY, USA Lausanne, Switzerland
cunxi.yu@epfl.ch houpingx@buffalo.edu giovanni.demicheli@epfl.ch

SLAP: A Supervised Learning Approach for Priority Cuts
Technology Mapping

Walter Lau Neto', Matheus T. Moreira?,Yingjie Li', Luca Amari®, Cunxi Yu', Pierre-Emmanuel Gaillardon'
'University of Utah, Salt Lake City, Utah, USA
2Chronos Tech, San Diego, California, USA
3Synopsys Inc., Design Group, Sunnyvale, California, USA

e Major CAD conferences (DAC, ICCAD, DATE, etc.) are featuring

increasing numbers of research on ML-CAD

e Specific workshop conference: ACM/IEEE Workshop on MLCAD



Deeper Dive: ML for Logic Synthesis

e Early Stage in IC Design: unoptimized layout from synthesis will hurt end PPA
e “Re-inventing” Logic Synthesis tools with ML methods is impractical / too complex

e Instead, replace heuristic-based decisions made during logic synthesis with ML
o  Order sequence of Boolean optimizations:
Flowtune (Multi-Arm Bandit), BOILS (GP Bayes-Opt), DeepRL-based works, etc.



Deeper Dive: ML for Logic Synthesis

e Instead, replace heuristic-based decisions made during logic synthesis with ML
o  Order sequence of Boolean optimizations:
Flowtune (Multi-Arm Bandit), BOILS (GP Bayes-Opt), DeepRL-based works, etc.
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Deeper Dive: ML for Logic Synthesis

BOILS: Bayesian Optimisation for Logic Synthesis

Cedric Malherbe*
Huawei Noah’s Ark Lab
cedric.malherbe @huawei.com

Rasul Tutunov
Huawei Noah's Ark Lab
rasul.tutunov@huawei.com

Antoine Grosnit*
Huawei Noah’s Ark Lab
antoine.grosnit@huawei.com

Haitham Bou Ammar
Huawei Noah’s Ark Lab
University College London
haitham.ammar @huawei.com

Xingchen Wan
Huawei Noah’s Ark Lab
University of Oxford
xingchen.wan@huawei.com

Jun Wang
Huawei Noah’s Ark Lab
University College London
w.j@huawei.com

seq” € argmin QoR.(seq)

L arg max -QoR;(seq)
seq€Alg N

> 1

~

This paper’s focus

Areac(seq)
Areac(ref)

Delay.(seq)
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Fig. 1.
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—e— BOILS - 200 it.
—¥— SBO - 300 it.
—A— DRILLS (A2C) - 1000 it.

—— GA - 567 it.
—e— RS - 1000 it.

-

s i

Greedy
EPFL best (Ivl/count)

Average QoR results over 10 EPFL circuits to recover BOiLS" QoR

values after only 200 trials.

Grosnit, Antoine, et al. "Boils: Bayesian optimisation for logic synthesis." 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2022.



Deeper Dive: ML for Logic Synthesis

e Early Stage in IC Design: unoptimized layout from synthesis will hurt end PPA
e “Re-inventing” Logic Synthesis tools with ML methods is impractical / too complex

e Instead, replace heuristic-based decisions made during logic synthesis with ML

o  Predict post-synthesis PPA: SNS, etc.



Deeper Dive: ML for Logic Synthesis

SNS’s not a Synthesizer: A Deep-Learning-Based Synthesis

Ceyu Xu
ceyu.xu@duke.edu
Duke University
Durham, North Carolina, USA

Input designs
(*.v, *.sv, *.vhd)

D Opensource Toolchain

Our contribution

Trainable
Deep Learning Model

Predictor
Chris Kjellgvist

christopherkjellgvist@duke.edu

Duke University

Durham, North Carolina, USA

@ Preprocessor
|

Lisa Wu Wills

lisa@cs.duke.edu

Duke University
Durham, North Carolina, USA
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square shape. The coremark scores are linearly normalized
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Xu, Ceyu, Chris Kjellgvist, and Lisa Wu Wills. "SNS's not a synthesizer: a deep-learning-based synthesis predictor."

Proceedings of the 49th Annual International Symposium on Computer Architecture. 2022.



Deeper Dive: ML for Logic Synthesis

e Early Stage in IC Design: unoptimized layout from synthesis will hurt end PPA
e “Re-inventing” Logic Synthesis tools with ML methods is impractical / too complex

e Instead, replace heuristic-based decisions made during logic synthesis with ML

o  Choice of optimizer / logic representation (AIG/MIG): LSOracle, etc.



Deeper Dive: ML for Logic Synthesis

[ Original Logic Network ]

LSOracle: a Logic Synthesis Framework Driven by Artificial

| K-way Circuit Partitioning |

Intelligence
Invited Paper Circuit
_ [ Partition 1 ] [ Partition 2 ] [ Partmon N ] Partitioning
Wa!ter !.au Neto Max ‘Austln S;ott TemPIe Luca Amaru and Management
LNIS, University of Utah, Salt LNIS, University of Utah, Salt LNIS, University of Utah, Salt ~ Synopsys Inc., Sunnyvale, CA,
Lake City, UT, USA Lake City, UT, USA Lake City, UT, USA USA I Part|t|0n Opt|m|zat|0n Manager
Xifan Tang Pierre-Emmanuel
LNIS, University of Utah, Salt Gaillardon circuit
Lake City, UT, USA LNIS, Ulr(xiversity of Utah, Salt Partitions Partitions Classification
1§ City, UT, USA .
T biased to AIG biased to MIG
Technology-independent Results ASIC Technology Mapped Results
— Original ABC CirKit LSOracle ABC CirKit LSOracle AlG MIG
#nodes depth | #nodes depth | #nodes depth | #nodes depth | area [ delay | area [ delay [ area [ delay Optimizer Optimizer LOgiC Optimization
Pico-RV 17,010 36 16,483 36 15,522 26 16,521 38 10,760 170 10,683 173 10,802 161 p p .
oc_aquarius | 25058 276 | 19,653 206 | 27328 97 | 20,713 167 | 13,685 7309 | 17,377 5249 | 16678 543.9 and Merging
$38417 12,394 36 8,352 27 8,135 21 8,559 28 7,142 146.5 7,144 144 7,135 1429 . . .
chip_bridge | 124,565 29 72,190 26 64,876 22 70,456 29 42,094 198.9 43,784 189 41,512 1879 | Clrcult Merglng |

FPU 64,814 145 61,424 145 58,445 44 64,469 131 47,573 206 48,318 197.9 47,124 200 ’

sum: 243,841 522 | 178,102 440 | 174,306 210 | 179,718 393 | 121,256 1,452 | 127,307 1,228 | 123,252 1,235 . =

ratio: 100 100 | 073 084 | 071 040 | 073 075 | 100 100 | 105 084 | 101 _ 085 [ Optimized Logic Network ]

Neto, Walter Lau, et al. "LSOracle: A logic synthesis framework driven by artificial intelligence." 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE, 2019.
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Challenges in ML-CAD
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When is ML/DL Successful?

e Abundance of Data and Availability of Compute
e Suppose compute is not a problem (enough GPUs for the model/dataset size)
e Example Datasets in Computer Vision: Image Classification
e CIFAR-10: 6000 images per class, total 60K images
e ImageNet: ~1000 images per synonym set, 100K+ synonym sets
e Example Datasets in NLP: Language Modeling
e WikiText-103: 100M tokens from > 28K selected Wikipedia articles



Challenges in ML-CAD

e Lack of Publicly Available Digital Circuit Datasets

e Relative shortage of Open-Source RTL

o < 50 substantial & full-developed open-source RTL projects/suites

o “Standardization” of data format a huge burden

m e.g. if use Graph Neural Networks (GNNs), which netlist representation
(AST, Gate-level, etc.) to use and how to extract graphs from different HDLs?
e Most work employ Supervised Learning:
labeling cost often incurs 1+ run of commercial/gold-standard EDA flow

o  For realistic workloads, could take order of minutes/hours/days per datapoint

e Similar for Deep RL: true reward evaluation incurs significant overhead

e Data and label efficiency is critical to success



Challenges in ML-CAD

e Implications of the Lack of Established, Large (Supervised) Datasets
e (1) Model cannot scale and difficult to generalize across multiple circuit designs
o  Greatly limits practical usage of ML in EDA workflows
e (2) Many works are not evaluated against realistic designs and/or
sufficient numbers of such designs
e (3) Substantial data collection (per-task) + ML training cost:
could have used run traditional toolflows longer for the same amount of time
e Ideas to Overcome these Limitations
e Data Augmentation and Transfer Learning
o Train with easier-to-obtain labels; transfer to actual task
o Domain adaptation to different circuit designs

(Mirhoseini et al. “Chip Placement with Deep Reinforcement Learning” 2020, etc.)



Challenges in ML-CAD o J—{remmeomsn]

I Hardware Design Dataset H Design Training Set I
I

e Train
e Ideas to Overcome this Limitations @
e Data Augmentation Example: = |Pa'hs| e
o SNS’s not a Synthesizer (Xu et al. ISCA 2022) E%
o Sample FF-to-FF paths from RTL graph Haiba P:TY =
o Model trained to predict PPA of individual paths; Chara(:::::;e:ég;itpalhs _,Tor:un@

Generalize to predicting full circuit PPA

Figure 4: SNS Training Flow
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Figure 2: Transformation from Source Circuit to GraphIR
Representation with Path Information and Graph Statistics
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Berkeley Research on ML-CAD

e ML for Analog-Mixed Signal (AMS) Circuit Design:

Previous students at Stojanovic and Nikolic Groups

BagNet: Berkeley Analog Generator with Layout AutoCkt: Deep Reinforcement Learning of Analog
Optimizer Boosted with Deep Neural Networks Circuit Designs

Kourosh Hakhamaneshi, Nick Werblun, Pieter Abbeel, Vladimir Stojanovié Keertana Settaluri, Ameer Haj-Ali, Qijing Huang, Kourosh Hakhamaneshi, Borivoje Nikolic

Email: kourosh_hakhamaneshi, nwerblun, vlada@berkeley.edu, pabbeel @cs.berkeley.edu ; Hmversxty of Calttoraia, Berkeley'
University of California Berkeley, USA {ksettaluri6,ameerh,qgijing.huang kourosh_hakhamaneshi,bora} @berkeley.edu

e Machine Learning for Power: Nikolic Group

e Novel Self-Supervised Learning for Circuit Representation Learning: Wawrzynek Group



ML-assisted Power Modeling

e Nayiri K. (advised by Prof. Bora Nikolic)

e Lack of standard benchmarks for both RTL + workloads
o SOTA reports good errors, but on very different (& usually simple) test data
o lack of diversity in benchmarks
o need benchmarks that are minimal to avoid wasting compute resources

e Need a power model...
o thatis auto-generated (no human input) and transferable to...
m new workloads
m new RTL? significantly more challenging, not very useful beyond Arch-level
o with good time & space granularity

e Power models must have good fidelity across design stage abstractions
(Arch - RTL — Syn — PAR)



ML-assisted Power Modeling

e Goal: input stimuli-dependent dynamic power prediction
o Input features: arch counter deltas every N cycles
o Output: predicted power for a window of N cycles

e (Golden power
o .fsdb’s through Joules with Intel16

e Quadratic regression model + ElasticNet(CV) RA2 NRMSE

workload train test test .
Event Counter Power Prediction, R? = 0.81, NRMSE = 18% dhrystone 0.93 0.15 38
40 _Q<°Q —— Joules Power Tralce —— Model Power Prediction median 0.93 0.70 31
4 mm 0.93 0.42 49
mt-matmul 0.93 -0.64 71
301 mt-vvadd 0.92 -12.63 41
% 25 multiply 0.93 0.44 24
520_ ' pmp 0.92 0.81 18
g i M , J gsort 0.92 0.72 26
15 Ls@ykgi?lkﬂ@ﬂ& S rsort 0.91 0.21 43
10 - spmv 0.92 0.31 40
5 4 towers 0.92 0.21 59
. vvadd 0.93 0.72 36

0 250 500 750 1000 1250 1500 1750 2000
Windows of N Cycles (N=100)



Hierarchical Circuit Representation Learning

e Josh K. (advised by Prof. John Wawrzynek)

1) Pretrain a generalizable model on a larger set of representative circuits
towards building a single model that can be fine-tuned to perform various downstream tasks

e One large pretrained model > finetune to any EDA task
e Instead of designing and training small models for individual EDA tasks

e Better performance even with smaller labeled dataset

2) Leverage intrinsic graph characteristics that are unique to netlists
e Hierarchical nature of circuit netlists:
o module-level, word-level, gate-level netlists
e Well-defined semantics for graph similarity
> |ogically equivalent graphs should have similar representations

Demonstrated by Wang et al. Functionality Matters in Netlist Representation Learning (DAC ‘22)



Hierarchical Circuit Representation Learning
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