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1 
Overview of 
Recent ML-CAD Research



ML for Various Stages 
of Digital IC Design

● Active research on applying ML (notably Deep 
Learning) to each stage of EDA

● Each stage can have multiple tasks to target:
○ e.g. in P&R:

■ Predict routing congestion
■ Predict routing result

○ Full or partial automation
○ Improve optimization of 

quality of results (QoR)
● But also, ML for AMS Design 

Huang, Guyue, et al. "Machine learning for electronic design automation: A survey." ACM Transactions on Design 
Automation of Electronic Systems (TODAES) 26.5 (2021)



Recent Trends: ML-CAD @ Industry
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Recent Trends: ML-CAD @ Academia

● Major CAD conferences (DAC, ICCAD, DATE, etc.) are featuring 

increasing numbers of research on ML-CAD

● Specific workshop conference: ACM/IEEE Workshop on MLCAD



Deeper Dive: ML for Logic Synthesis

● Early Stage in IC Design: unoptimized layout from synthesis will hurt end PPA 

● “Re-inventing” Logic Synthesis tools with ML methods is impractical / too complex

● Instead, replace heuristic-based decisions made during logic synthesis with ML

○ Order sequence of Boolean optimizations: 

Flowtune (Multi-Arm Bandit), BOiLS (GP Bayes-Opt), DeepRL-based works, etc.

○ Predict post-synthesis PPA: SNS, etc.

○ Choice of optimizer / logic representation (AIG/MIG): LSOracle, etc.
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Deeper Dive: ML for Logic Synthesis

Grosnit, Antoine, et al. "Boils: Bayesian optimisation for logic synthesis." 2022 Design, 
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2022.
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Deeper Dive: ML for Logic Synthesis

Xu, Ceyu, Chris Kjellqvist, and Lisa Wu Wills. "SNS's not a synthesizer: a deep-learning-based synthesis predictor." 
Proceedings of the 49th Annual International Symposium on Computer Architecture. 2022.
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Deeper Dive: ML for Logic Synthesis

Neto, Walter Lau, et al. "LSOracle: A logic synthesis framework driven by artificial intelligence." 2019 IEEE/ACM 
International Conference on Computer-Aided Design (ICCAD). IEEE, 2019.



2
Challenges in ML-CAD



When is ML/DL Successful?

● Abundance of Data and Availability of Compute 

● Suppose compute is not a problem (enough GPUs for the model/dataset size)

● Example Datasets in Computer Vision: Image Classification 

● CIFAR-10: 6000 images per class, total 60K images

● ImageNet: ~1000 images per synonym set, 100K+ synonym sets

● Example Datasets in NLP: Language Modeling

● WikiText-103: 100M tokens from > 28K selected Wikipedia articles



Challenges in ML-CAD
● Lack of Publicly Available Digital Circuit Datasets

● Relative shortage of Open-Source RTL

○ < 50 substantial & full-developed open-source RTL projects/suites

○ “Standardization” of data format a huge burden

■ e.g. if use Graph Neural Networks (GNNs), which netlist representation 

(AST, Gate-level, etc.) to use and how to extract graphs from different HDLs?

● Most work employ Supervised Learning: 

labeling cost often incurs 1+ run of commercial/gold-standard EDA flow

○ For realistic workloads, could take order of minutes/hours/days per datapoint

● Similar for Deep RL: true reward evaluation incurs significant overhead

● Data and label efficiency is critical to success



Challenges in ML-CAD
● Implications of the Lack of Established, Large (Supervised) Datasets

● (1) Model cannot scale and difficult to generalize across multiple circuit designs

○ Greatly limits practical usage of ML in EDA workflows

● (2) Many works are not evaluated against realistic designs and/or 

sufficient numbers of such designs

● (3) Substantial data collection (per-task) + ML training cost: 

could have used run traditional toolflows longer for the same amount of time

● Ideas to Overcome these Limitations

● Data Augmentation and Transfer Learning

○ Train with easier-to-obtain labels; transfer to actual task

○ Domain adaptation to different circuit designs 

(Mirhoseini et al. “Chip Placement with Deep Reinforcement Learning” 2020, etc.)



Challenges in ML-CAD
● Ideas to Overcome this Limitations

● Data Augmentation Example:

○ SNS’s not a Synthesizer (Xu et al. ISCA 2022)

○ Sample FF-to-FF paths from RTL graph

○ Model trained to predict PPA of individual paths; 

Generalize to predicting full circuit PPA



3
Research on ML-CAD
@ Berkeley



Berkeley Research on ML-CAD
● ML for Analog-Mixed Signal (AMS) Circuit Design: 

Previous students at Stojanovic and Nikolic Groups

● Machine Learning for Power: Nikolic Group

● Novel Self-Supervised Learning for Circuit Representation Learning: Wawrzynek Group



ML-assisted Power Modeling
● Nayiri K. (advised by Prof. Bora Nikolic)

● Lack of standard benchmarks for both RTL + workloads
○ SOTA reports good errors, but on very different (& usually simple) test data
○ lack of diversity in benchmarks 
○ need benchmarks that are minimal to avoid wasting compute resources

● Need a power model…
○ that is auto-generated (no human input) and transferable to…

■ new workloads
■ new RTL? significantly more challenging, not very useful beyond Arch-level

○ with good time & space granularity 

● Power models must have good fidelity across design stage abstractions 
(Arch → RTL → Syn → PAR)



ML-assisted Power Modeling
● Goal: input stimuli-dependent dynamic power prediction 

○ Input features: arch counter deltas every N cycles
○ Output: predicted power for a window of N cycles

● Golden power
○ .fsdb’s through Joules with Intel16

● Quadratic regression model + ElasticNet(CV)            R^2  NRMSE
workload   train      test       test .
dhrystone  0.93   0.15   38
median     0.93   0.70   31
mm         0.93   0.42   49
mt-matmul  0.93 -0.64   71
mt-vvadd   0.92      -12.63   41
multiply   0.93  0.44   24
pmp         0.92       0.81       18
qsort      0.92  0.72   26
rsort      0.91  0.21   43
spmv       0.92  0.31   40
towers     0.92  0.21   59
vvadd      0.93  0.72   36



Hierarchical Circuit Representation Learning

● Josh K. (advised by Prof. John Wawrzynek)

1)  Pretrain a generalizable model on a larger set of representative circuits 
towards building a single model that can be fine-tuned to perform various downstream tasks 

● One large pretrained model ➤ finetune to any EDA task

● Instead of designing and training small models for individual EDA tasks

● Better performance even with smaller labeled dataset

2)  Leverage intrinsic graph characteristics that are unique to netlists

● Hierarchical nature of circuit netlists: 

○ module-level, word-level, gate-level netlists 

● Well-defined semantics for graph similarity

➤  logically equivalent graphs should have similar representations

Demonstrated by Wang et al. Functionality Matters in Netlist Representation Learning (DAC ‘22)



Hierarchical Circuit Representation Learning



Questions


