

EECS 151/251A Spring 2019 Digital Design and Integrated Circuits

Instructors:
Wawrzynek

Lecture 9

CMOS abstraction

CMOS Devices

- MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

$\underset{=}{\underline{1}} B$
The gate acts like a capacitor. A high voltage on the gate attracts charge into the channel. If a voltage exists between the source and drain a current will flow. In its simplest approximation, the device acts like a switch.

CMOS Transistors - State-of-the-Art

Drain versus Source - Definition

MOS transistors are symmetrical devices (Source and drain are interchangeable)

Source is the node w/ the lowest voltage

MOS Transistor as a Resistive Switch

MOS Transistor
$\leftrightarrow \quad$ A Switch!

Let's look beneath the abstraction: origins of $R_{\text {on }}$ and V_{T}

Transistor "resistance"

- Actually, nonlinear I/V characteristic:

Linearizing makes all delay and power calculations simple (usually just 1st order ODEs):

MOSFET Threshold Voltage

ON/OFF Switch Model of MOS Transistor

Plot on a "Log" Scale to See "Off" Current

Process engineers can:

increase lon by lowering V_{t} - but that raises Ioff decrease loff by raising V_{t} - but that lowers lon.

A More Realistic Switch

A Logic Perspective

NMOS Transistor

A Complementary Switch

$$
Y=Z \text { if } X=0
$$

PMOS Transistor

Source is the node w/ the highest voltage!

The CMOS Inverter: A First Glance

The Switch Inverter First-Order DC Analysis*

*First-order means we will ignore Capacitance.

Switch logic

Static Logic Gate

- At every point in time (except during the switching transients) each gate output is connected to either $\mathrm{V}_{D D}$ or $\mathrm{V}_{G N D}$ via a low resistive path.
- The output of the gate assumes at all times the value of the Boolean function implemented by the circuit (ignoring, once again, the transient effects during switching periods).

Example: CMOS Inverter

Building logic from switches

AND

$$
Y=X \text { if } A \text { AND } B
$$

Parallel

OR $Y=X$ if A OR B
(output undefined if condition not true)

Logic using inverting switches

NAND
$Y=X$ if \bar{A} OR \bar{B}
$=\overline{A B}$
(output undefined if condition not true)

Static Complementary CMOS

PUN and PDN are dual logic networks
PUN and PDN functions are complementary
Dual Graphs

Complementary CMOS Logic Style

\square PUN is the dual to PDN
(can be shown using DeMorgan's Theorems)

$$
\begin{aligned}
& \overline{A+B}=\overline{A B} \bar{B} \\
& \overline{A B}=\bar{A}+\bar{B}
\end{aligned}
$$

- Static CMOS gates are always inverting

Example Gate: NAND

\mathbf{A}	\mathbf{B}	Out
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Truth Table of a 2 imput NAND gate

- PDN: $\mathrm{G}=\mathrm{AB} \Rightarrow$ Conduction to GND
- PUN: $F=\bar{A}+\bar{B}=\overline{A B} \Rightarrow$ Conduction to $V_{D D}$
$\square \overline{G\left(\ln _{1}, \ln _{2}, \ln _{3}, \ldots\right)} \equiv F\left(\overline{\mathrm{In}_{1}}, \overline{\mathrm{In}_{2}}, \overline{\ln }, \ldots\right)$

Example Gate: NOR

| |
| :---: | :---: | :---: |
| A B Out
 $\mathbf{0}$ 0 1
 0 1 0
 $\mathbf{1}$ 0 0
 $\mathbf{1}$ $\mathbf{1}$ 0 |
| Truth Table of a 2 imput NOR gate |

Complex CMOS Gate

OUT $=\overline{D+A \cdot(B+C)}$
OUT $=\overline{D \cdot A+B \cdot C}$

Non-inverting logic

PUN and PDN are dual logic networks
PUN and PDN functions are complementary

Switch Limitations

Tough luck ...

Transmission Gate

- Transmission gates are the way to build "switches" in CMOS.
- In general, both transistor types are needed:
nFET to pass zeros.
- pFET to pass ones.
- The transmission gate is bi-directional (unlike logic gates).

- Does not directly connect to Vdd and GND, but can be combined with logic gates or buffers to simplify many logic structures.

Transmission-gate Multiplexor

2-to-1 multiplexor:

$$
c=s a+s^{\prime} b
$$

Switches simplify the implementation:

Compare the cost to logic gate implementation.

Care must be taken to not string together many pass-transistor stages. Occasionally, need to "rebuffer" with static gate.

4-to-1 Transmission-gate Mux

- The series connection of passtransistors in each branch effectively forms the AND of $s 1$ and s 0 (or their complement).
- Compare cost to logic gate implementation

Any better solutions?

Alternative 4-to-1 Multiplexor

- This version has less delay from in to out.
- In both versions, care must be taken to avoid turning on multiple paths simultaneously (shorting together the inputs).

Tri-state Buffers

Tri-state Buffers

Tri-state buffers enable "bidirectional" connections.

Tri-state buffers are used when multiple circuits all connect to a common wire. Only one circuit at a
 time is allowed to drive the bus. All others "disconnect" their outputs, but can "listen".

Tri-state Based Multiplexor

Multiplexor

Transistor Circuit for inverting multiplexor:

If $s=1$ then $c=a$ else $c=b$

Latches and Flip-flops

Positive Level-sensitive latch: CLK

Positive Edge-triggered flip-flop

 built from two level-sensitive latches:

Latch Implementation:

Summary: Complimentary CMOS Properties

- Full rail-to-rail swing
- Besides leakage (due to loff), no static power dissipation
- Direct path current during switching

