

EECS 151/251A Spring 2019 Digital Design and Integrated Circuits

Instructors: Wawrzynek

Lecture 9

CMOS abstraction

CMOS Devices

□ MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

The gate acts like a capacitor. A high voltage on the gate attracts charge into the channel. If a voltage exists between the source and drain a current will flow. In its simplest approximation, the device acts like a switch.

CMOS Transistors – State-of-the-Art

Drain versus Source - Definition

MOS transistors are symmetrical devices (Source and drain are interchangeable)

Source is the node w/ the lowest voltage

MOS Transistor as a Resistive Switch

Let's look beneath the abstraction: origins of R_{on} and V_T

Transistor "resistance"

□ Actually, nonlinear I/V characteristic:

Linearizing makes all delay and power calculations simple (usually just 1st order ODEs):

MOSFET Threshold Voltage

ON/OFF Switch Model of MOS Transistor

Plot on a "Log" Scale to See "Off" Current

A More Realistic Switch

A Logic Perspective

A Complementary Switch

Source is the node w/ the highest voltage!

The CMOS Inverter: A First Glance

Represents the sum of all the capacitance at the output of the inverter and everything to which it connects: (drains, interconnections gate capacitance of next gate(s))

The Switch Inverter First-Order DC Analysis*

*First-order means we will ignore Capacitance.

Switch logic

Static Logic Gate

- At every point in time (except during the switching transients) each gate output is connected to either V_{DD} or V_{GND} via a low resistive path.
- The output of the gate assumes at all times the value of the Boolean function implemented by the circuit (ignoring, once again, the transient effects during switching periods).

Example: CMOS Inverter

Building logic from switches

(output undefined if condition not true)

Logic using inverting switches

(output undefined if condition not true)

Static Complementary CMOS

PUN and PDN are dual logic networks PUN and PDN functions are complementary

Complementary CMOS Logic Style

PUN is the <u>dual</u> to PDN (can be shown using DeMorgan's Theorems)

$$\overline{A+B} = \overline{AB}$$
$$\overline{AB} = \overline{A} + \overline{B}$$

Static CMOS gates are always inverting

AND = NAND + INV

Example Gate: NAND

- □ PDN: G = AB \Rightarrow Conduction to GND
- □ PUN: $F = \overline{A} + \overline{B} = \overline{AB} \Rightarrow$ Conduction to V_{DD}
- $\Box \ \overline{\mathsf{G}}(\mathsf{In}_1,\mathsf{In}_2,\mathsf{In}_3,\ldots) \equiv \mathsf{F}(\mathsf{In}_1,\mathsf{In}_2,\mathsf{In}_3,\ldots)$

Example Gate: NOR

Complex CMOS Gate

$$OUT = D + A \cdot (B + C)$$

 $OUT = D \cdot A + B \cdot C$

Non-inverting logic

PUN and PDN are dual logic networks PUN and PDN functions are complementary

Switch Limitations

Tough luck ...

Transmission Gate

- □ Transmission gates are the way to build "switches" in CMOS.
- In general, both transistor types are needed:
 - □ nFET to pass zeros.
 - □ pFET to pass ones.
- □ The transmission gate is bi-directional (unlike logic gates).

Does not directly connect to Vdd and GND, but can be combined with logic gates or buffers to simplify many logic structures.

Transmission-gate Multiplexor

Switches simplify the implementation:

Compare the cost to logic gate implementation.

Care must be taken to not string together many pass-transistor stages. Occasionally, need to "rebuffer" with static gate. ²⁸

4-to-1 Transmission-gate Mux

- The series connection of passtransistors in each branch effectively forms the AND of s1 and s0 (or their complement).
- Compare cost to logic gate implementation

Any better solutions?

Alternative 4-to-1 Multiplexor

- This version has less delay from in to out.
- In both versions, care must be taken to avoid turning on multiple paths simultaneously (shorting together the inputs).

Tri-state Buffers

Tri-state Buffers

Tri-state buffers enable "bidirectional" connections.

Tri-state buffers are used when multiple circuits all connect to a common wire. Only one circuit at a time is allowed to drive the bus. All others "disconnect" their outputs, but can "listen".

Tri-state Based Multiplexor

Multiplexor

Transistor Circuit for inverting multiplexor:

If s=1 then c=a else c=b

Summary: Complimentary CMOS Properties

Full rail-to-rail swing

- Besides leakage (due to I_{off}), no static power dissipation
- Direct path current during switching