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Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => 50 transistors 
delay: 3-input OR gate delay + 7-input AND gate delay
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Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => 50 transistors 
delay: 3-input OR gate delay + 7-input AND gate delay 

❑ Factored form: 
 x = (a + b +c)(d + e)f + g 

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND 
      => 20 transistors 
delay: 3-input OR + 3-input AND + 2-input OR 

Footnote: NAND would be used in 
place of all ANDs and ORs.



EE141
 5

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => 50 transistors 
delay: 3-input OR gate delay + 7-input AND gate delay 

❑ Factored form: 
 x = (a + b +c)(d + e)f + g 

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND 
      => 20 transistors 
delay: 3-input OR + 3-input AND + 2-input OR  

Which is faster? 
In general: Using multiple levels (more than 2) will reduce the cost.  Sometimes also delay. 

Sometimes a tradeoff between cost and delay. 
In reality:  The ASIC/FPGA mapping tools will attempt to make the proper tradeoff.

Footnote: NAND would be used in 
place of all ANDs and ORs.
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Multi-level Combinational Logic
Another Example:  F = abc + abd +a'c'd' + b'c'd'   
     let x = ab  y = c+d 
       f = xy + x'y' 

No convenient hand methods exist for multi-level logic simplification: 
a) CAD Tools use sophisticated algorithms and heuristics 

Guess what?  These problems tend to be NP-complete 
b) Humans and tools often exploit some special structure (example adder)

Incorporates fanout.
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NAND-NAND & NOR-NOR Networks
DeMorgan's Law Review: 
  (a + b)' = a' b'        (a b)' = a' + b' 
   a + b   = (a' b')'      (a b)  = (a' + b')' 

”Bubble pushing”: move bubbles through gates, or 
introduce in pairs, or remove pairs:          

Introducing or removing pairs of bubbles: (x’)' = x.
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NAND-NAND Networks
❑ Mapping from AND/OR to NAND/NAND
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Multi-level Networks
Convert to NANDs: 
F = a(b + cd) + bc'
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Finite State Machines
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Finite State Machines (FSMs)
❑ FSM circuits are a type of 

sequential circuit: 
▪ output depends on present 

and past inputs 
– effect of past inputs is 

represented by the current state 

❑ Behavior is represented by 
State Transition Diagram: 
▪ traverse one edge per clock 

cycle.
 11
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FSM Implementation

❑ Flip-flops form state register 

❑ number of states ≤ 2number of flip-flops 

❑ CL (combinational logic) calculates next state and output 
❑ Remember:  The FSM follows exactly one edge per cycle.

Later we will learn how to implement in Verilog.  Now we 
learn how to design “by hand” to the gate level.
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Parity Checker: FSM Example
A string of bits has “even parity” if the number of 1's in the string is even. 
❑ Design a circuit that accepts a infinite bit-serial stream of bits, and outputs 

a 0 if the parity thus far is even and outputs a 1 if odd:

Next we take this example through the “formal design process”.  But 
first, can you guess a circuit that performs this function?
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Formal Design Process (2) 

“State Transition Diagram” 
▪ circuit is in one of two 

“states”. 
▪ transition on each cycle 

with each new input, over 
exactly one arc (edge). 

▪ Output depends on which 
state the circuit is in.

 14



EE141

Formal Design Process (3,4)
State Transition Table: 

Invent a code to represent states: 
Let 0 = EVEN state, 1 = ODD state

present                   next 
state       OUT  IN   state 

 EVEN       0     0    EVEN 
 EVEN       0     1     ODD 
 ODD         1     0     ODD 
 ODD         1     1    EVEN

present state (ps)   OUT   IN   next state (ns) 
            0                    0      0                0 
            0                    0      1                1 
            1                    1      0                1 
            1                    1      1                0

Derive logic equations from 
table (how?): 

OUT = PS 
NS = PS xor IN
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Formal Design Process (5,6)

❑ Circuit Diagram: 

▪ XOR gate for NS 
calculation 

▪ DFF to hold present state 
▪ no logic needed for output 

in this example.

Logic equations from table: 
OUT = PS 
NS = PS xor IN

nsps

 16
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Formal Design Process
Review of Design Steps: 

 1. Specify circuit function (English) 
 2. Draw state transition diagram 
 3. Write down symbolic state transition table 
 4. Write down encoded state transition table 
 5. Derive logic equations 
 6. Derive circuit diagram 
  Register to hold state 
  Combinational Logic for Next State and Outputs

 17
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FSM Design 
Example
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Combination Lock Example

❑ Used to allow entry to a locked room: 
2-bit serial combination.  Example 01,11: 
 1. Set switches to 01, press ENTER 
 2. Set switches to 11, press ENTER 
 3. OPEN is asserted (OPEN=1). 
  If wrong code, ERROR is asserted (after second combo word entry). 
  Press Reset at anytime to try again.

 19
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Combinational Lock STD

Assume the ENTER 
button when pressed 
generates a pulse for 
only one clock cycle.
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Symbolic State Transition Table
RESET  ENTER  COM1  COM2  Preset State         Next State  OPEN ERROR 
0 0 * * START  START 0 0 
0 1 0 * START  BAD1 0 0 
0 1 1 * START  OK1 0 0 
0 0 * * OK1  OK1 0 0 
0 1 * 0 OK1  BAD2 0 0 
0 1 * 1 OK1  OK2 0 0 
0 * * * OK2  OK2 1 0 
0 0 * * BAD1  BAD1 0 0 
0 1 * * BAD1  BAD2 0 0 
0 * * * BAD2  BAD2 0 1 
1 * * * *  START 0 0

Decoder logic for checking 
combination (01,11):

 21
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Encoded ST Table
• Assign states: 
START=000, OK1=001, OK2=011 
BAD1=100, BAD2=101 
• Omit reset.  Assume that primitive flip-flops has reset 

input. 
• Rows not shown have don't cares in output.  

Correspond to invalid PS values. 

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0

 22
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State Encoding

❑ In general: 
     # of possible FSM states = 2# of Flip-flops 

  Example:  
   state1 = 01, state2 = 11, state3 = 10, state4 = 00 

❑ However, often more than log2(# of states) 
FFs are used, to simplify logic at the cost of 
more FFs. 

❑ Extreme example is one-hot state encoding.

 23
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State Encoding
❑ One-hot encoding of states. 
❑ One FF per state. 

❑ Why one-hot encoding? 
▪ Simple design procedure. 

– Circuit matches state transition diagram (example next page). 
▪ Often can lead to simpler and faster “next state” and output logic. 

❑ Why not do this? 
▪ Can be costly in terms of Flip-flops for FSMs with large number of 

states. 
❑ FPGAs are “Flip-flop rich”, therefore one-hot state machine 

encoding is often a good approach.  

 24
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One-hot encoded FSM
❑ Even Parity Checker Circuit: 

❑ In General:
• FFs must be initialized for correct 

operation (only one 1)

Circuit generated 
through direct 
inspection of the STD.

 25
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One-hot encoded combination lock

 26



EE141

Moore Versus Mealy 
Machines
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FSM Implementation Notes

❑ All examples so far generate 
output based only on the 
present state, commonly 
called a “Moore Machine”: 

❑ If output functions include 
both present state and input 
then called a “Mealy 
Machine”:
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Finite State Machines
❑ Example: Edge Detector 
  Bit are received one at a time (one per cycle),  
  such as:   000111010       time 

   
  Design a circuit that asserts 
  its output for one cycle when  
  the input bit stream changes 
  from 0 to 1.   
  
  We'll try two different solutions.

FSM

CLK

IN OUT

 29
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State Transition Diagram Solution A

IN   PS    NS  OUT 
 0    00     00    0 
 1    00     01    0 
 0    01     00    1 
 1    01     11    1 
 0    11     00    0 
 1    11     11    0

ZERO

CHANGE

ONE

 30
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Solution A, circuit derivation
IN   PS    NS  OUT 
 0    00     00    0 
 1    00     01    0 
 0    01     00    1 
 1    01     11    1 
 0    11     00    0 
 1    11     11    0

ZERO

CHANGE

ONE

 31
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Solution B
Output depends not only on PS but also on input, IN

IN   PS   NS   OUT 
 0     0      0       0 
 0     1      0       0 
 1     0      1       1 
 1     1      1       0

Let ZERO=0, 
        ONE=1

NS = IN, OUT = IN PS'

What's the intuition about this solution?

 32
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Edge detector timing diagrams

• Solution A: both edges of output follow the clock 
• Solution B: output rises with input rising edge and is 

asynchronous wrt the clock, output fails synchronous with 
next clock edge

 33

Moore

Mealy
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FSM Comparison
Solution A 

Moore Machine 
❑ output function only of PS 
❑ maybe more states (why?) 
❑ synchronous outputs 

▪ Input glitches not send at output 
▪ one cycle “delay” 
▪ full cycle of stable output

Solution B 
Mealy Machine 

• output function of both PS & input 
• maybe fewer states 
• asynchronous outputs 
– if input glitches, so does output 
– output immediately available 
– output may not be stable long enough to 

be useful (below):

If output of Mealy FSM 
goes through 
combinational logic before 
being registered, the CL 
might delay the signal and 
it could be missed by the 
clock edge (or violate set-
up time requirement) 

 34
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FSM Recap
Moore Machine Mealy Machine

Both machine types allow one-hot implementations.
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Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy 

style outputs.  Nothing wrong with this, but you need to be 
aware of the timing differences between the two types. 

2. The output timing behavior of the Moore machine can be 
achieved in a Mealy machine by “registering” the Mealy 
output values:

 36
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FSMs in Verilog
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General FSM Design Process with Verilog 
Implementation
Design Steps: 
 1. Specify circuit function (English) 
 2. Draw state transition diagram 
 3. Write down symbolic state transition table 
 4. Assign encodings (bit patterns) to symbolic states 
 5. Code as Verilog behavioral description 
✓ Use parameters to represent encoded states. 
✓ Use separate always blocks for register assignment and CL logic 

block. 
✓ Use case for CL block.  Within each case section (state) assign all 

outputs and next state value based on inputs.   Note:  For Moore 
style machine make outputs dependent only on state not 
dependent on inputs.  

 38
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Finite State Machine in Verilog
State Transition Diagram

Implementation Circuit Diagram

Holds a symbol to keep 
track of which bubble 

the FSM is in.

CL functions to determine output 
value and next state based on input 

and current state. 
out = f(in, current state) 

next state = f(in, current state)



EE141

Finite State Machines
module FSM1(clk, rst, in, out); 
input clk, rst; 
input in; 
output out; 

// Defined state encoding: 
parameter IDLE = 2'b00; 
parameter S0 = 2'b01; 
parameter S1 = 2'b10; 
reg out; 
reg [1:0] present_state, next_state; 

// always block for state register 
always @(posedge clk) 
 if (rst) present_state <= IDLE; 
 else present_state <= next_state; 

Must use reset to force 
to initial state.

reset not always shown in STD

out not a register, but assigned in always block

THE register to hold the “state” of the FSM.

Combinational logic 
signals for transition.

Constants local to 
this module.

A separate always block should be used for combination logic part of FSM.  Next state 
and output generation.  (Always blocks in a design work in parallel.)  40
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FSMs (cont.)
// always block for combinational logic portion 
always @(present_state or in)  
case (present_state) 
// For each state def output and next 
  IDLE   : begin 
           out = 1’b0; 
           if (in == 1’b1) next_state = S0; 
           else next_state = IDLE;   
         end 
  S0     : begin 
           out = 1’b0; 
           if (in == 1’b1) next_state = S1; 
           else next_state = IDLE; 
         end 
  S1     : begin 
           out = 1’b1; 
           if (in == 1’b1) next_state = S1; 
           else next_state = IDLE; 
               end 
  default: begin 
      next_state = IDLE; 
      out = 1’b0; 
    end 
endcase 
endmodule

For each state define: 

Each state becomes 
a case clause.

Output value(s)
State transition

Use “default” to cover unassigned state.  Usually 
unconditionally transition to reset state.

Mealy or Moore?
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Edge Detector Example

always @(posedge clk)   
 if (rst) ps <= ZERO; 
 else ps <= ns; 
always @(ps in) 
    case (ps) 
      ZERO: if (in) begin  
             out = 1’b1; 
             ns = ONE; 
           end 
    else begin 
      out = 1’b0; 
      ns = ZERO; 
    end 
      ONE: if (in) begin 
    out = 1’b0; 
    ns = ONE; 
   end 
   else begin 
     out = 1’b0; 
     ns = ZERO; 
   end 
      default: begin  
       out = 1’bx;  
       ns = default;  
      end

always @(posedge clk)   
 if (rst) ps <= ZERO; 
 else ps <= ns; 
always @(ps in) 
    case (ps) 
      ZERO: begin 
      out = 1’b0; 
      if (in) ns = CHANGE; 
                else ns = ZERO; 
    end 
      CHANGE: begin 
       out = 1’b1; 
       if (in) ns = ONE; 
       else ns = ZERO; 
      end 
         ONE: begin 
       out = 1’b0; 
       if (in) ns = ONE; 
       else ns = ZERO; 
      default: begin  
       out = 1’bx;  
       ns = default;  
      end

Mealy Machine Moore Machine

 42
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Procedural Assignments
The sequential semantics of the blocking assignment allows 
variables to be multiply assigned within a single always block.    
Unexpected behavior can result from mixing these assignments in 
a single block.  Standard rules: 

i. Use blocking assignments to model combinational logic 
within an always block ( “=”). 

ii. Use non-blocking assignments to implement sequential 
logic (“<=”). 

iii. Do not mix blocking and non-blocking assignments in the 
same always block. 

iv. Do not make assignments to the same variable from more 
than one always block.
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FSM CL block (original)
always @(present_state or in)  
 case (present_state) 
  IDLE   : begin 
           out = 1’b0; 
           if (in == 1’b1) next_state = S0; 
           else next_state = IDLE;   
         end 
  S0     : begin 
           out = 1’b0; 
           if (in == 1’b1) next_state = S1; 
           else next_state = IDLE; 
         end 
  S1     : begin 
           out = 1’b1; 
           if (in == 1’b1) next_state = S1; 
           else next_state = IDLE; 

               end 
  default: begin 
      next_state = IDLE; 
      out = 1’b0; 
    end 
 endcase 
endmodule
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FSM CL block rewritten

always @* 
 begin  
  next_state = IDLE; 
  out = 1’b0;   
  case (state) 
   IDLE   : if (in == 1’b1) next_state = S0; 
   S0     : if (in == 1’b1) next_state = S1; 
   S1     : begin 
             out = 1’b1; 
             if (in == 1’b1) next_state = S1; 
            end 
   default: ;  
  endcase 
 end 
Endmodule 

* for sensitivity list

Normal values: used unless 
specified below.

Within case only need to 
specify exceptions to the 

normal values. 

Note: The use of “blocking assignments” allow signal 
values to be “rewritten”, simplifying the specification.
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Some final warnings
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Combinational logic always blocks
Make sure all signals assigned in a combinational always 
block are explicitly assigned values every time that the 
always block executes.  Otherwise latches will be 
generated to hold the last value for the signals not 
assigned values.

module mux4to1 (out, a, b, c, d, sel); 
output out; 
input a, b, c, d; 
input [1:0] sel; 
reg out; 
always @(sel or a or b or c or d) 
begin 
  case (sel) 
    2'd0: out = a; 
    2'd1: out = b; 
    2'd3: out = d; 
  endcase 
end 
endmodule

Sel case value 2’d2 omitted. 

Out is not updated when select line 
has 2’d2. 

Latch is added by tool to hold the 
last value of out under this condition. 

Similar problem with if-else 
statements.
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To avoid synthesizing a latch in this case, add the missing select 
line: 
   2'd2: out = c; 

Or, in general, use the “default” case: 

   default:  out = foo; 

If you don’t care about the assignment in a case (for instance 
you know that it will never come up) then you can assign the 
value “x” to the variable.  Example: 
   default:  out = 1‘bx; 
 The x is treated as a “don’t care” for synthesis and will 
simplify the logic.  
  
    Be careful when assigning x (don’t care).  If this case were to 
come up, then the synthesized circuit and simulation may differ.

Combinational logic always blocks (cont.)
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module and_gate (out, in1, in2);  
  input  in1, in2; 
  output  out;  
  reg   out;  
 
  always @(in1) begin 

     out = in1 & in2; 

  end 

endmodule

Incomplete Triggers
Leaving out an input trigger usually results in latch 
generation for the missing trigger.

Easy way to avoid incomplete triggers for combinational logic  
is with:  always @*

in2 not in always sensitivity list. 

A latched version of in2 is 
synthesized and used as input to the 
and-gate, so that the and-gate output 
is not always sensitive to in2.



EE141

Intro to Logic 
Synthesis
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EECS151/251A Design Methodology
HDL 

Specification

Hierarchically define 
structure and/or 

behavior of circuit.

Simulation

Functional verification.

Synthesis

Maps specification to 
resources of implementation 

platform (FPGA or ASIC).

Note:  This in not the entire story.  Other tools are often used 
analyze HDL specifications and synthesis results.  More on this later.
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Logic Synthesis 
❑ Verilog and VHDL started out as simulation 

languages, but quickly people wrote programs to 
automatically convert Verilog code into low-level 
circuit descriptions (netlists). 

❑ Synthesis converts Verilog (or other HDL) descriptions 
to implementation technology specific primitives: 
▪ For FPGAs: LUTs, flip-flops, and RAM blocks 
▪ For ASICs: standard cell gate and flip-flop libraries, and 

memory blocks.
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Why Logic Synthesis?
1. Automatically manages many details of the design 

process: 
⇒ Fewer bugs 
⇒ Improved productivity 

2. Abstracts the design data (HDL description) from any 
particular implementation technology. 
▪ Designs can be re-synthesized targeting different chip 

technologies.  Ex:  first implement in FPGA then later in ASIC. 
3. In some cases, leads to a more optimal design than could 

be achieved by manual means (ex: logic optimization)

Why Not Logic Synthesis?
1. May lead to non-optimal designs in some cases. 
2. Often less transparent than desired:  Good performance 

requires basically modeling the compiler in your head…
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Main Logic Synthesis Steps
Parsing and 

Syntax Check

Design 
Elaboration

Inference 
and Library 
Substitution

Logic 
Expansion

Logic 
Optimization

Map, Place & 
Route

Load in HDL file, run macro preprocessor for 
`define, `include, etc..

Compute parameter expressions, process 
generates, create instances, connect ports.

Recognize and insert special blocks (memory, 
flip-flops, arithmetic structures, ...)

Expand combinational logic to primitive 
Boolean representation.

Apply Boolean algebra and heuristics to 
simplify and optimize under constraints.

CL and state elements to LUTs (FPGA) or 
Technology Library (ASCI) , assign physical 
locations,  route connections.

foo.v

foo.ncd, foo.gates
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Operators and Synthesis
❑ Logical operators map into primitive 

logic gates 
❑ Arithmetic operators map into 

adders, subtractors, … 
▪ Unsigned 2s complement 
▪ Model carry: target is one-bit wider 

that source 
▪ Watch out for *, %, and / 

❑ Relational operators generate 
comparators 

❑ Shifts by constant amount are just 
wire connections 
▪ No logic involved 

❑ Variable shift amounts, a whole 
different story --- shifter 

❑ Conditional expression generates 
logic or MUX

Y = ~X << 2

X[3]

Y[0]

Y[1]

Y[2]X[0]

X[1]

X[2]

Y[3]

Y[4]

Y[5]
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Simple Synthesis Example
module foo (A, B, s0, s1, F); 
  input [3:0] A; 
  input [3:0] B; 
  input s0,s1; 
  output [3:0] F; 
  reg F; 
  always @ (*) 
  if (!s0 && s1 || s0) F=A; else F=B; 
endmodule 

Should expand if-else into 4-bit wide multiplexor and optimize the 
control logic and ultimately to a single LUT on an FPGA:

A

B
F
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Encoder Example
Nested IF-ELSE might lead to “priority logic” 
Example: 4-to-2 encoder

always @(x)  
begin : encode  
if (x == 4'b0001) y = 2'b00;  
else if (x == 4'b0010) y = 2'b01;  
else if (x == 4'b0100) y = 2'b10;  
else if (x == 4'b1000) y = 2'b11;  
else y = 2'bxx;  
end 

This style of cascaded logic 
may adversely affect the 
performance of the circuit.
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Encoder Example (cont.)
To avoid “priority logic” use the case construct:

always @(x)  
begin : encode  
case (x) 
4’b0001: y = 2'b00;  
4’b0010: y = 2'b01;  
4'b0100: y = 2'b10;  
4'b1000: y = 2'b11;  
default: y = 2'bxx;  
endcase  
end 

All cases are matched in parallel.
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Encoder Example (cont.)

A similar simplification would be applied to the if-else version also.

This circuit would be simplified during synthesis to take 
advantage of constant values as follows and other Boolean 
equalities:


