
EE141

EECS 151/251A 
Spring	2019  
Digital	Design	and	Integrated	
Circuits
Instructor:		
John	Wawrzynek

Lecture 7

EE141

Multi-level Logic

EE141
 3

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
❑ Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND
 => 50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

EE141
 4

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
❑ Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND
 => 50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

❑ Factored form:
 x = (a + b +c)(d + e)f + g

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND
 => 20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Footnote: NAND would be used in
place of all ANDs and ORs.

EE141
 5

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
❑ Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND
 => 50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

❑ Factored form:
 x = (a + b +c)(d + e)f + g

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND
 => 20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Which is faster?
In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay. 

Sometimes a tradeoff between cost and delay.
In reality: The ASIC/FPGA mapping tools will attempt to make the proper tradeoff.

Footnote: NAND would be used in
place of all ANDs and ORs.

EE141
 6

Multi-level Combinational Logic
Another Example: F = abc + abd +a'c'd' + b'c'd'
 let x = ab y = c+d
 f = xy + x'y'

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

Incorporates fanout.

EE141
 7

NAND-NAND & NOR-NOR Networks
DeMorgan's Law Review:
 (a + b)' = a' b' (a b)' = a' + b'
 a + b = (a' b')' (a b) = (a' + b')'

”Bubble pushing”: move bubbles through gates, or
introduce in pairs, or remove pairs:

Introducing or removing pairs of bubbles: (x’)' = x.

EE141
 8

NAND-NAND Networks
❑ Mapping from AND/OR to NAND/NAND

EE141
 9

Multi-level Networks
Convert to NANDs:
F = a(b + cd) + bc'

EE141

Finite State Machines

EE141

Finite State Machines (FSMs)
❑ FSM circuits are a type of

sequential circuit:
▪ output depends on present

and past inputs
– effect of past inputs is

represented by the current state

❑ Behavior is represented by
State Transition Diagram:
▪ traverse one edge per clock

cycle.
 11

EE141

FSM Implementation

❑ Flip-flops form state register

❑ number of states ≤ 2number of flip-flops

❑ CL (combinational logic) calculates next state and output
❑ Remember: The FSM follows exactly one edge per cycle.

Later we will learn how to implement in Verilog. Now we
learn how to design “by hand” to the gate level.

 12

EE141

Parity Checker: FSM Example
A string of bits has “even parity” if the number of 1's in the string is even.
❑ Design a circuit that accepts a infinite bit-serial stream of bits, and outputs

a 0 if the parity thus far is even and outputs a 1 if odd:

Next we take this example through the “formal design process”. But
first, can you guess a circuit that performs this function?

 13

EE141

Formal Design Process (2)

“State Transition Diagram”
▪ circuit is in one of two

“states”.
▪ transition on each cycle

with each new input, over
exactly one arc (edge).

▪ Output depends on which
state the circuit is in.

 14

EE141

Formal Design Process (3,4)
State Transition Table:

Invent a code to represent states:
Let 0 = EVEN state, 1 = ODD state

present next
state OUT IN state

 EVEN 0 0 EVEN
 EVEN 0 1 ODD
 ODD 1 0 ODD
 ODD 1 1 EVEN

present state (ps) OUT IN next state (ns)
 0 0 0 0
 0 0 1 1
 1 1 0 1
 1 1 1 0

Derive logic equations from
table (how?):

OUT = PS
NS = PS xor IN

 15

EE141

Formal Design Process (5,6)

❑ Circuit Diagram:

▪ XOR gate for NS
calculation

▪ DFF to hold present state
▪ no logic needed for output

in this example.

Logic equations from table:
OUT = PS
NS = PS xor IN

nsps

 16

EE141

Formal Design Process
Review of Design Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Write down encoded state transition table
 5. Derive logic equations
 6. Derive circuit diagram
 Register to hold state
 Combinational Logic for Next State and Outputs

 17

EE141

FSM Design
Example

EE141

Combination Lock Example

❑ Used to allow entry to a locked room:
2-bit serial combination. Example 01,11:
 1. Set switches to 01, press ENTER
 2. Set switches to 11, press ENTER
 3. OPEN is asserted (OPEN=1).
 If wrong code, ERROR is asserted (after second combo word entry).
 Press Reset at anytime to try again.

 19

EE141

Combinational Lock STD

Assume the ENTER
button when pressed
generates a pulse for
only one clock cycle.

 20

EE141

Symbolic State Transition Table
RESET ENTER COM1 COM2 Preset State Next State OPEN ERROR
0 0 * * START START 0 0
0 1 0 * START BAD1 0 0
0 1 1 * START OK1 0 0
0 0 * * OK1 OK1 0 0
0 1 * 0 OK1 BAD2 0 0
0 1 * 1 OK1 OK2 0 0
0 * * * OK2 OK2 1 0
0 0 * * BAD1 BAD1 0 0
0 1 * * BAD1 BAD2 0 0
0 * * * BAD2 BAD2 0 1
1 * * * * START 0 0

Decoder logic for checking
combination (01,11):

 21

EE141

Encoded ST Table
• Assign states:
START=000, OK1=001, OK2=011
BAD1=100, BAD2=101
• Omit reset. Assume that primitive flip-flops has reset

input.
• Rows not shown have don't cares in output.

Correspond to invalid PS values.

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0

 22

EE141

State Encoding

❑ In general:
 # of possible FSM states = 2# of Flip-flops

 Example:
 state1 = 01, state2 = 11, state3 = 10, state4 = 00

❑ However, often more than log2(# of states)
FFs are used, to simplify logic at the cost of
more FFs.

❑ Extreme example is one-hot state encoding.

 23

EE141

State Encoding
❑ One-hot encoding of states.
❑ One FF per state.

❑ Why one-hot encoding?
▪ Simple design procedure.

– Circuit matches state transition diagram (example next page).
▪ Often can lead to simpler and faster “next state” and output logic.

❑ Why not do this?
▪ Can be costly in terms of Flip-flops for FSMs with large number of

states.
❑ FPGAs are “Flip-flop rich”, therefore one-hot state machine

encoding is often a good approach.

 24

EE141

One-hot encoded FSM
❑ Even Parity Checker Circuit:

❑ In General:
• FFs must be initialized for correct

operation (only one 1)

Circuit generated
through direct
inspection of the STD.

 25

EE141

One-hot encoded combination lock

 26

EE141

Moore Versus Mealy
Machines

EE141

FSM Implementation Notes

❑ All examples so far generate
output based only on the
present state, commonly
called a “Moore Machine”:

❑ If output functions include
both present state and input
then called a “Mealy
Machine”:

 28

EE141

Finite State Machines
❑ Example: Edge Detector
 Bit are received one at a time (one per cycle),
 such as: 000111010 time

 Design a circuit that asserts
 its output for one cycle when
 the input bit stream changes
 from 0 to 1.

 We'll try two different solutions.

FSM

CLK

IN OUT

 29

EE141

State Transition Diagram Solution A

IN PS NS OUT
 0 00 00 0
 1 00 01 0
 0 01 00 1
 1 01 11 1
 0 11 00 0
 1 11 11 0

ZERO

CHANGE

ONE

 30

EE141

Solution A, circuit derivation
IN PS NS OUT
 0 00 00 0
 1 00 01 0
 0 01 00 1
 1 01 11 1
 0 11 00 0
 1 11 11 0

ZERO

CHANGE

ONE

 31

EE141

Solution B
Output depends not only on PS but also on input, IN

IN PS NS OUT
 0 0 0 0
 0 1 0 0
 1 0 1 1
 1 1 1 0

Let ZERO=0,
 ONE=1

NS = IN, OUT = IN PS'

What's the intuition about this solution?

 32

EE141

Edge detector timing diagrams

• Solution A: both edges of output follow the clock
• Solution B: output rises with input rising edge and is

asynchronous wrt the clock, output fails synchronous with
next clock edge

 33

Moore

Mealy

EE141

FSM Comparison
Solution A

Moore Machine
❑ output function only of PS
❑ maybe more states (why?)
❑ synchronous outputs

▪ Input glitches not send at output
▪ one cycle “delay”
▪ full cycle of stable output

Solution B
Mealy Machine

• output function of both PS & input
• maybe fewer states
• asynchronous outputs
– if input glitches, so does output
– output immediately available
– output may not be stable long enough to

be useful (below):

If output of Mealy FSM
goes through
combinational logic before
being registered, the CL
might delay the signal and
it could be missed by the
clock edge (or violate set-
up time requirement)

 34

EE141

FSM Recap
Moore Machine Mealy Machine

Both machine types allow one-hot implementations.

 35

EE141

Final Notes on Moore versus Mealy
1. A given state machine could have both Moore and Mealy

style outputs. Nothing wrong with this, but you need to be
aware of the timing differences between the two types.

2. The output timing behavior of the Moore machine can be
achieved in a Mealy machine by “registering” the Mealy
output values:

 36

EE141

FSMs in Verilog

EE141

General FSM Design Process with Verilog
Implementation
Design Steps:
 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Assign encodings (bit patterns) to symbolic states
 5. Code as Verilog behavioral description
✓ Use parameters to represent encoded states.
✓ Use separate always blocks for register assignment and CL logic

block.
✓ Use case for CL block. Within each case section (state) assign all

outputs and next state value based on inputs. Note: For Moore
style machine make outputs dependent only on state not
dependent on inputs.

 38

EE141
 39

Finite State Machine in Verilog
State Transition Diagram

Implementation Circuit Diagram

Holds a symbol to keep
track of which bubble

the FSM is in.

CL functions to determine output
value and next state based on input

and current state.
out = f(in, current state)

next state = f(in, current state)

EE141

Finite State Machines
module FSM1(clk, rst, in, out);
input clk, rst;
input in;
output out;

// Defined state encoding:
parameter IDLE = 2'b00;
parameter S0 = 2'b01;
parameter S1 = 2'b10;
reg out;
reg [1:0] present_state, next_state;

// always block for state register
always @(posedge clk)
 if (rst) present_state <= IDLE;
 else present_state <= next_state;

Must use reset to force
to initial state.

reset not always shown in STD

out not a register, but assigned in always block

THE register to hold the “state” of the FSM.

Combinational logic
signals for transition.

Constants local to
this module.

A separate always block should be used for combination logic part of FSM. Next state
and output generation. (Always blocks in a design work in parallel.) 40

EE141
 41

FSMs (cont.)
// always block for combinational logic portion
always @(present_state or in)
case (present_state)
// For each state def output and next
 IDLE : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;
 end
 default: begin
 next_state = IDLE;
 out = 1’b0;
 end
endcase
endmodule

For each state define:

Each state becomes
a case clause.

Output value(s)
State transition

Use “default” to cover unassigned state. Usually
unconditionally transition to reset state.

Mealy or Moore?

EE141

Edge Detector Example

always @(posedge clk)
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
 case (ps)
 ZERO: if (in) begin
 out = 1’b1;
 ns = ONE;
 end
 else begin
 out = 1’b0;
 ns = ZERO;
 end
 ONE: if (in) begin
 out = 1’b0;
 ns = ONE;
 end
 else begin
 out = 1’b0;
 ns = ZERO;
 end
 default: begin
 out = 1’bx;
 ns = default;
 end

always @(posedge clk)
 if (rst) ps <= ZERO;
 else ps <= ns;
always @(ps in)
 case (ps)
 ZERO: begin
 out = 1’b0;
 if (in) ns = CHANGE;
 else ns = ZERO;
 end
 CHANGE: begin
 out = 1’b1;
 if (in) ns = ONE;
 else ns = ZERO;
 end
 ONE: begin
 out = 1’b0;
 if (in) ns = ONE;
 else ns = ZERO;
 default: begin
 out = 1’bx;
 ns = default;
 end

Mealy Machine Moore Machine

 42

EE141

Procedural Assignments
The sequential semantics of the blocking assignment allows
variables to be multiply assigned within a single always block.
Unexpected behavior can result from mixing these assignments in
a single block. Standard rules:

i. Use blocking assignments to model combinational logic
within an always block (“=”).

ii. Use non-blocking assignments to implement sequential
logic (“<=”).

iii. Do not mix blocking and non-blocking assignments in the
same always block.

iv. Do not make assignments to the same variable from more
than one always block.

EE141

FSM CL block (original)
always @(present_state or in)
 case (present_state)
 IDLE : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S0;
 else next_state = IDLE;
 end
 S0 : begin
 out = 1’b0;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;
 end
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 else next_state = IDLE;

 end
 default: begin
 next_state = IDLE;
 out = 1’b0;
 end
 endcase
endmodule

EE141

FSM CL block rewritten

always @*
 begin
 next_state = IDLE;
 out = 1’b0;
 case (state)
 IDLE : if (in == 1’b1) next_state = S0;
 S0 : if (in == 1’b1) next_state = S1;
 S1 : begin
 out = 1’b1;
 if (in == 1’b1) next_state = S1;
 end
 default: ;
 endcase
 end
Endmodule

* for sensitivity list

Normal values: used unless
specified below.

Within case only need to
specify exceptions to the

normal values.

Note: The use of “blocking assignments” allow signal
values to be “rewritten”, simplifying the specification.

EE141

Some final warnings

EE141

Combinational logic always blocks
Make sure all signals assigned in a combinational always
block are explicitly assigned values every time that the
always block executes. Otherwise latches will be
generated to hold the last value for the signals not
assigned values.

module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin
 case (sel)
 2'd0: out = a;
 2'd1: out = b;
 2'd3: out = d;
 endcase
end
endmodule

Sel case value 2’d2 omitted.

Out is not updated when select line
has 2’d2.

Latch is added by tool to hold the
last value of out under this condition.

Similar problem with if-else
statements.

EE141

To avoid synthesizing a latch in this case, add the missing select
line:
 2'd2: out = c;

Or, in general, use the “default” case:

 default: out = foo;

If you don’t care about the assignment in a case (for instance
you know that it will never come up) then you can assign the
value “x” to the variable. Example:
 default: out = 1‘bx;
 The x is treated as a “don’t care” for synthesis and will
simplify the logic.

 Be careful when assigning x (don’t care). If this case were to
come up, then the synthesized circuit and simulation may differ.

Combinational logic always blocks (cont.)

EE141

module and_gate (out, in1, in2);  
 input in1, in2; 
 output out;  
 reg out;  
 
 always @(in1) begin

 out = in1 & in2;

 end

endmodule

Incomplete Triggers
Leaving out an input trigger usually results in latch
generation for the missing trigger.

Easy way to avoid incomplete triggers for combinational logic
is with: always @*

in2 not in always sensitivity list.

A latched version of in2 is
synthesized and used as input to the
and-gate, so that the and-gate output
is not always sensitive to in2.

EE141

Intro to Logic
Synthesis

EE141

EECS151/251A Design Methodology
HDL 

Specification

Hierarchically define
structure and/or

behavior of circuit.

Simulation

Functional verification.

Synthesis

Maps specification to
resources of implementation

platform (FPGA or ASIC).

Note: This in not the entire story. Other tools are often used
analyze HDL specifications and synthesis results. More on this later.

EE141

Logic Synthesis
❑ Verilog and VHDL started out as simulation

languages, but quickly people wrote programs to
automatically convert Verilog code into low-level
circuit descriptions (netlists).

❑ Synthesis converts Verilog (or other HDL) descriptions
to implementation technology specific primitives:
▪ For FPGAs: LUTs, flip-flops, and RAM blocks
▪ For ASICs: standard cell gate and flip-flop libraries, and

memory blocks.

EE141

Why Logic Synthesis?
1. Automatically manages many details of the design

process:
⇒ Fewer bugs
⇒ Improved productivity

2. Abstracts the design data (HDL description) from any
particular implementation technology.
▪ Designs can be re-synthesized targeting different chip

technologies. Ex: first implement in FPGA then later in ASIC.
3. In some cases, leads to a more optimal design than could

be achieved by manual means (ex: logic optimization)

Why Not Logic Synthesis?
1. May lead to non-optimal designs in some cases.
2. Often less transparent than desired: Good performance

requires basically modeling the compiler in your head…

EE141

Main Logic Synthesis Steps
Parsing and

Syntax Check

Design
Elaboration

Inference
and Library
Substitution

Logic
Expansion

Logic
Optimization

Map, Place &
Route

Load in HDL file, run macro preprocessor for
`define, `include, etc..

Compute parameter expressions, process
generates, create instances, connect ports.

Recognize and insert special blocks (memory,
flip-flops, arithmetic structures, ...)

Expand combinational logic to primitive
Boolean representation.

Apply Boolean algebra and heuristics to
simplify and optimize under constraints.

CL and state elements to LUTs (FPGA) or
Technology Library (ASCI) , assign physical
locations, route connections.

foo.v

foo.ncd, foo.gates

EE141

Operators and Synthesis
❑ Logical operators map into primitive

logic gates
❑ Arithmetic operators map into

adders, subtractors, …
▪ Unsigned 2s complement
▪ Model carry: target is one-bit wider

that source
▪ Watch out for *, %, and /

❑ Relational operators generate
comparators

❑ Shifts by constant amount are just
wire connections
▪ No logic involved

❑ Variable shift amounts, a whole
different story --- shifter

❑ Conditional expression generates
logic or MUX

Y = ~X << 2

X[3]

Y[0]

Y[1]

Y[2]X[0]

X[1]

X[2]

Y[3]

Y[4]

Y[5]

EE141

Simple Synthesis Example
module foo (A, B, s0, s1, F);
 input [3:0] A;
 input [3:0] B;
 input s0,s1;
 output [3:0] F;
 reg F;
 always @ (*)
 if (!s0 && s1 || s0) F=A; else F=B;
endmodule

Should expand if-else into 4-bit wide multiplexor and optimize the
control logic and ultimately to a single LUT on an FPGA:

A

B
F

EE141

Encoder Example
Nested IF-ELSE might lead to “priority logic”
Example: 4-to-2 encoder

always @(x)
begin : encode
if (x == 4'b0001) y = 2'b00;
else if (x == 4'b0010) y = 2'b01;
else if (x == 4'b0100) y = 2'b10;
else if (x == 4'b1000) y = 2'b11;
else y = 2'bxx;
end

This style of cascaded logic
may adversely affect the
performance of the circuit.

EE141

Encoder Example (cont.)
To avoid “priority logic” use the case construct:

always @(x)
begin : encode
case (x)
4’b0001: y = 2'b00;
4’b0010: y = 2'b01;
4'b0100: y = 2'b10;
4'b1000: y = 2'b11;
default: y = 2'bxx;
endcase
end

All cases are matched in parallel.

EE141

Encoder Example (cont.)

A similar simplification would be applied to the if-else version also.

This circuit would be simplified during synthesis to take
advantage of constant values as follows and other Boolean
equalities:

