

EECS 151/251A Spring 2019 Digital Design and Integrated Circuits

Instructor:
John Wawrzynek

Lecture 7

Multi-level Logic

Multi-level Combinational Logic

- Example: reduced sum-of-products form x = adf + aef + bdf + bef + cdf + cef + g
- Implementation in 2-levels with gates:
cost: 17 -input OR, 63 -input AND => 50 transistors
delay: 3 -input OR gate delay +7 -input AND gate delay

Multi-level Combinational Logic

- Example: reduced sum-of-products form x = adf + aef + bdf + bef + cdf + cef + g
- Implementation in 2-levels with gates:
cost: 17 -input OR, 63 -input AND => 50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

- Factored form:
$\mathbf{x}=(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{d}+\mathrm{e}) \mathrm{f}+\mathrm{g}$
cost: 13 -input OR, 2 2-input OR, 13 -input AND => 20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Footnote: NAND would be used in place of all ANDs and ORs.

Multi-level Combinational Logic

- Example: reduced sum-of-products form $\mathbf{x}=\mathrm{adf}+\mathrm{aef}+\mathrm{bdf}+\mathrm{bef}+\mathrm{cdf}+\mathrm{cef}+\mathrm{g}$
- Implementation in 2-levels with gates:
cost: 17 -input OR, 63 -input AND
=> 50 transistors
delay: 3-input OR gate delay +7 -input AND gate delay
- Factored form:

$$
x=(a+b+c)(d+e) f+g
$$

cost: 13 -input OR, 2 2-input OR, 13 -input AND => 20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Footnote: NAND would be used in place of all ANDs and ORs.
n

Which is faster?

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay. Sometimes a tradeoff between cost and delay. In reality: The ASIC/FPGA mapping tools will attempt to make the proper tradeoff.

Multi-level Combinational Logic

Another Example: $F=a b c+a b d+'^{\prime} c^{\prime} d^{\prime}+b^{\prime} c^{\prime} d^{\prime}$

$$
\text { let } x=a b \quad y=c+d
$$

$$
f=x y+x^{\prime} y^{\prime}
$$

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

NAND-NAND \& NOR-NOR Networks

DeMorgan's Law Review:

$$
\begin{array}{ll}
(a+b)^{\prime}=a^{\prime} b^{\prime} & (a b)^{\prime}=a^{\prime}+b^{\prime} \\
a+b=\left(a^{\prime} b^{\prime}\right)^{\prime} & (a b)=\left(a^{\prime}+b^{\prime}\right)^{\prime}
\end{array}
$$

"Bubble pushing": move bubbles through gates, or introduce in pairs, or remove pairs:

Introducing or removing pairs of bubbles: $\left(x^{\prime}\right)^{\prime}=x$.

NAND-NAND Networks

- Mapping from AND/OR to NAND/NAND

Multi-level Networks

Convert to NANDs:
$F=a(b+c d)+b c '$

Finite State Machines

Finite State Machines (FSMs)

\square FSM circuits are a type of sequential circuit:

- output depends on present and past inputs
- effect of past inputs is represented by the current state
- Behavior is represented by State Transition Diagram:
- traverse one edge per clock cycle.

FSM Implementation

- Flip-flops form state register
- number of states $\leq 2^{\text {number of flip-flops }}$
- CL (combinational logic) calculates next state and output
- Remember: The FSM follows exactly one edge per cycle.

Later we will learn how to implement in Verilog. Now we learn how to design "by hand" to the gate level.

Parity Checker: FSM Example

A string of bits has "even parity" if the number of 1's in the string is even.

- Design a circuit that accepts a infinite bit-serial stream of bits, and outputs a 0 if the parity thus far is even and outputs a 1 if odd:

example: 0	0	1	1	1	0	1	
	even	even	odd	even	odd	odd	even

\square \square OUT \square \square

Next we take this example through the "formal design process". But first, can you guess a circuit that performs this function?

Formal Design Process (2)

example:	0	0	1	1	1	0	1
	even	even	odd	even	odd	odd	even

"State Transition Diagram"

- circuit is in one of two "states".
- transition on each cycle with each new input, over exactly one arc (edge).
- Output depends on which state the circuit is in.

Formal Design Process $(3,4)$

State Transition Table:

present state	OUT	IN	next state
EVEN	0	0	EVEN
EVEN	0	1	ODD
ODD	1	0	ODD
ODD	1	1	EVEN

Invent a code to represent states:
Let $0=$ EVEN state, $1=$ ODD state

present state (ps)	OUT	IN	next state (ns)
0	0	0	0
0	0	1	1
1	1	0	1
1	1	1	0

Derive logic equations from table (how?):
$O U T=P S$
$N S=P S$ xor $I N$

Formal Design Process $(5,6)$

Logic equations from table:
OUT $=P S$
NS = PS xor IN

- Circuit Diagram:
- XOR gate for NS calculation
- DFF to hold present state

- no logic needed for output in this example.

Formal Design Process

Review of Design Steps:

1. Specify circuit function (English)
2. Draw state transition diagram
3. Write down symbolic state transition table
4. Write down encoded state transition table
5. Derive logic equations
6. Derive circuit diagram

Register to hold state
Combinational Logic for Next State and Outputs

FSM Design Example

Combination Lock Example

Combinational Lock STD

Symbolic State Transition Table

RESET	ENTER	COM1	COM2	Preset State	Next State	OPEN	ERROR
0	0	$*$	$*$	START	START	0	0
0	1	0	$*$	START	BAD1	0	0
0	1	1	$*$	START	OK1	0	0
0	0	$*$	$*$	OK1	OK1	0	0
0	1	$*$	0	OK1	BAD2	0	0
0	1	$*$	1	OK1	OK2	0	0
0	$*$	$*$	$*$	OK2	OK2	1	0
0	0	$*$	$*$	BAD1	BAD1	0	0
0	1	$*$	$*$	BAD1	BAD2	0	0
0	$*$	$*$	$*$	BAD2	BAD2	0	1
1	$*$	$*$	$*$	$*$	START	0	0

Decoder logic for checking combination (01,11):

Encoded ST Table

- Assign states:

START=000, OK1=001, OK2=011
$B A D 1=100, B A D 2=101$

- Omit reset. Assume that primitive flip-flops has reset input.
- Rows not shown have don't cares in output. Correspond to invalid PS values.

- What are the output functions for OPEN and ERROR?

State Encoding

- In general:

\# of possible FSM states = 2\# of Flip-flops
Example:

$$
\text { state } 1=01, \text { state } 2=11, \text { state } 3=10, \text { state } 4=00
$$

- However, often more than $\log _{2}$ (\# of states) FFs are used, to simplify logic at the cost of more FFs.
- Extreme example is one-hot state encoding.

State Encoding

- One-hot encoding of states.
- One FF per state.

Ex: 3 States

STATE1: 001
STATE2: 010
STATE3: 100

- Why one-hot encoding?
- Simple design procedure.
- Circuit matches state transition diagram (example next page).
- Often can lead to simpler and faster "next state" and output logic.
- Why not do this?
- Can be costly in terms of Flip-flops for FSMs with large number of states.
- FPGAs are "Flip-flop rich", therefore one-hot state machine encoding is often a good approach.

One-hot encoded FSM

- Even Parity Checker Circuit:

Circuit generated through direct inspection of the STD.
. In General:

- FFs must be initialized for correct operation (only one 1)

One-hot encoded combination lock

Moore Versus Mealy Machines

FSM Implementation Notes

- All examples so far generate output based only on the present state, commonly called a "Moore Machine":

- If output functions include both present state and input then called a "Mealy Machine":

Finite State Machines

- Example: Edge Detector

Bit are received one at a time (one per cycle),
such as: $000111010 \longrightarrow$ time CLK

Design a circuit that asserts its output for one cycle when the input bit stream changes from 0 to 1 .

We'll try two different solutions.

State Transition Diagram Solution A

Solution A, circuit derivation

Solution B

Output depends not only on PS but also on input, IN

What's the intuition about this solution?

Edge detector timing diagrams

- Solution A: both edges of output follow the clock
- Solution B: output rises with input rising edge and is asynchronous wrt the clock, output fails synchronous with next clock edge

FSM Comparison

Solution A Moore Machine

- output function only of PS
- maybe more states (why?)
- synchronous outputs
- Input glitches not send at output
- one cycle "delay"
- full cycle of stable output

Solution B

Mealy Machine

- output function of both PS \& input
- maybe fewer states
- asynchronous outputs
- if input glitches, so does output
- output immediately available
- output may not be stable long enough to be useful (below):

If output of Mealy FSM goes through combinational logic before being registered, the CL might delay the signal and it could be missed by the clock edge (or violate setup time requirement)

FSM Recap

Moore Machine

Mealy Machine

input value/output values

Both machine types allow one-hot implementations.

Final Notes on Moore versus Mealy

1. A given state machine could have both Moore and Mealy style outputs. Nothing wrong with this, but you need to be aware of the timing differences between the two types.
2. The output timing behavior of the Moore machine can be achieved in a Mealy machine by "registering" the Mealy output values:

Mealy Machine

FSMs in Verilog

General FSM Design Process with Verilog Implementation

Design Steps:

1. Specify circuit function (English)
2. Draw state transition diagram
3. Write down symbolic state transition table
4. Assign encodings (bit patterns) to symbolic states
5. Code as Verilog behavioral description
\checkmark Use parameters to represent encoded states.
\checkmark Use separate always blocks for register assignment and CL logic block.
\checkmark Use case for CL block. Within each case section (state) assign all outputs and next state value based on inputs. Note: For Moore style machine make outputs dependent only on state not dependent on inputs.

Finite State Machine in Verilog

Implementation Circuit Diagram

State Transition Diagram

Holds a symbol to keep value and next state based on input track of which bubble the FSM is in. and current state.
out = f(in, current state)
next state $=f($ in, current state)

Finite State Machines

```
module FSM1 (clk, inst,`in, out);
``` input clk, rst; input in; output out;

Must use reset to force to initial state.
reset not always shown in STD
// Defined state encoding:
parameter IDLE = 2'b00;
Constants local to this module.
parameter SO = 2'b01;

parameter \(51=2\) 'b10;
 out not a regíster, but assigned in always block
reg \({ }^{\prime}[1 ; 0]\) present statè, next staté;

Combinational logic signals for transition.

THE register to hold the "state" of the FSM.
// always block for state register always @(posedge clk)
if (rst) present_state <= IDLE;
else present_state <= next_state;
A separate always block should be used for combination logic part of FSM. Next state and output generation. (Always blocks in a design work in parallel.)

\section*{FSMs (cont.)}
```

// always block for combinational logic portion
always @(present_state or in)
case (present_state)
// For each state def output and next
IDLE : begin
out = 1'b0;
if (in == 1'b1) next_state = S0;
else next_state = IDLE;
end
SO : begin
out = 1'b0;
if (in == l'b1) next_state = S1;
else next_state = IDLE;
end
S1 : begin
out = 1'b1;

```

```

            else next_state = IDLE;
        end
    dēfaū\overline{l}
        | next_state = IDLE;
        out- = - 'bo;
    end
    endcase

```

Use "default" to cover unassigned state. Usually unconditionally transition to reset state.

Each state becomes
a case clause.

For each state define: Output value(s)

\section*{State transition}
endmodule
endcase endmodule

\section*{Edge Detector Example}

\section*{Mealy Machine}

\section*{Moore Machine}

\section*{Procedural Assignments}

The sequential semantics of the blocking assignment allows variables to be multiply assigned within a single always block. Unexpected behavior can result from mixing these assignments in a single block. Standard rules:
i. Use blocking assignments to model combinational logic within an always block ("=").
ii. Use non-blocking assignments to implement sequential logic ("<=").
iii. Do not mix blocking and non-blocking assignments in the same always block.
iv. Do not make assignments to the same variable from more than one always block.

\section*{FSM CL block (original)}
```

always @(present_state or in)
case (present_state)
IDLE : begin
out = 1'b0;
if (in == l'b1) next_state = s0;
else next_state = IDLE;
end
S0 : begin
out = 1'b0;
if (in == 1'b1) next_state = S1;
else next_state = IDLE;
end
S1
: begin
out = l'b1;
if (in == l'b1) next_state = S1;
else next_state = IDLE;
end
default: begin
next_state = IDLE;
out = 1'b0;
end
endcase
endmodule

```

\section*{FSM CL block rewritten}
```

always_@*
out = 1'bo; case (state)
default: ;

```
endcase
end
Endmodule
* for sensitivity list
begin \(-1,------1\) Normal values: used unless specified below.

IDLE : if (in == 1'b1) next_state \(=s 0\); S0 : if (in == 1'b1) next_state = S1;
S1 : begin out \(=1\) 'b1;

Within case only need to specify exceptions to the normal values.

Note: The use of "blocking assignments" allow signal values to be "rewritten", simplifying the specification.

\section*{Some final warnings}

\section*{Combinational logic always blocks}

Make sure all signals assigned in a combinational always block are explicitly assigned values every time that the always block executes. Otherwise latches will be generated to hold the last value for the signals not assigned values.
Sel case value 2'd2 omitted.
```

```
module mux4to1 (out, a, b, c, d, sel);
```

```
module mux4to1 (out, a, b, c, d, sel);
output out;
output out;
input a, b, c, d;
input a, b, c, d;
input [1:0] sel;
input [1:0] sel;
reg out;
reg out;
always @(sel or a or b or c or d)
always @(sel or a or b or c or d)
begin
begin
 case (sel)
 case (sel)
 2'dO: out = a;
 2'dO: out = a;
 2'd1: out = b;
 2'd1: out = b;
 2'd3: out = d;
```

        2'd3: out = d;
    ```
```

    endcase
    ```
 endcase
end
end
endmodule
```

endmodule

```

Out is not updated when select line has 2'd2.
Latch is added by tool to hold the
last value of out under this condition.

Similar problem with if-else statements.
Latch is added by tool to hold the last value of out under this condition.

\section*{Combinational logic always blocks (cont.)}

To avoid synthesizing a latch in this case, add the missing select line:
2'd2: out = c;

Or, in general, use the "default" case:
default: out = foo;

If you don't care about the assignment in a case (for instance you know that it will never come up) then you can assign the value " \(x\) " to the variable. Example:
default: out = 1'bx;

The \(x\) is treated as a "don't care" for synthesis and will simplify the logic.

Be careful when assigning \(x\) (don't care). If this case were to come up, then the synthesized circuit and simulation may differ.

\section*{Incomplete Triggers}

Leaving out an input trigger usually results in latch generation for the missing trigger.
```

module and_gate (out, in1, in2);
input in1, in2;
output out; in2 not in always sensitivity list.
always @(in1) begin A latched version of in2 is
out = in1 \& in2; synthesized and used as input to the
end
endmodule

```

A latched version of in2 is synthesized and used as input to the and-gate, so that the and-gate output is not always sensitive to in2.

Easy way to avoid incomplete triggers for combinational logic is with: always @*

\section*{Intro to Logic Synthesis}

\section*{EECS151/251A Design Methodology}

Note: This in not the entire story. Other tools are often used analyze HDL specifications and synthesis results. More on this later.

\section*{Logic Synthesis}
- Verilog and VHDL started out as simulation languages, but quickly people wrote programs to automatically convert Verilog code into low-level circuit descriptions (netlists).

- Synthesis converts Verilog (or other HDL) descriptions to implementation technology specific primitives:
- For FPGAs: LUTs, flip-flops, and RAM blocks
- For ASICs: standard cell gate and flip-flop libraries, and memory blocks.

\section*{Why Logic Synthesis?}
1. Automatically manages many details of the design process:
\(\Rightarrow\) Fewer bugs
\(\Rightarrow\) Improved productivity
2. Abstracts the design data (HDL description) from any particular implementation technology.
- Designs can be re-synthesized targeting different chip technologies. Ex: first implement in FPGA then later in ASIC.
3. In some cases, leads to a more optimal design than could be achieved by manual means (ex: logic optimization)

\section*{Why Not Logic Synthesis?}
1. May lead to non-optimal designs in some cases.
2. Often less transparent than desired: Good performance requires basically modeling the compiler in your head...

\section*{foo.v \(\downarrow \quad\) Main Logic Synthesis Steps}

Parsing and Syntax Check

Design
Elaboration
Inference and Library Substitution

Logic
Expansion
Logic
Optimization
Map, Place \& Route

Load in HDL file, run macro preprocessor for `define, `include, etc..

Compute parameter expressions, process generates, create instances, connect ports.

Recognize and insert special blocks (memory, flip-flops, arithmetic structures, ...)

Expand combinational logic to primitive Boolean representation.

Apply Boolean algebra and heuristics to simplify and optimize under constraints.

CL and state elements to LUTs (FPGA) or Technology Library (ASCI) , assign physical locations, route connections.
foo.ncd, foo.gates

\section*{Operators and Synthesis}
- Logical operators map into primitive logic gates
- Arithmetic operators map into adders, subtractors, ...
- Unsigned 2s complement
- Model carry: target is one-bit wider that source
- Watch out for *, \%, and /
- Relational operators generate comparators
- Shifts by constant amount are just wire connections
- No logic involved
- Variable shift amounts, a whole different story --- shifter
- Conditional expression generates logic or MUX

\section*{Simple Synthesis Example}
module foo (A, B, s0, s1, F);
```

input [3:0] A;
input [3:0] B;
input s0,s1;
output [3:0] F;
reg F;
always @ (*)
if (!s0 \&\& s1 || s0) F=A; else F=B;

```

endmodule

Should expand if-else into 4-bit wide multiplexor and optimize the control logic and ultimately to a single LUT on an FPGA:

\section*{Encoder Example}

Nested IF-ELSE might lead to "priority logic"
Example: 4-to-2 encoder

\section*{Encoder Example (cont.)}

To avoid "priority logic" use the case construct:
always @(x)
begin : encode case (x)
4'b0001: \(y=2\) 'b00;
4'b0010: \(y=2 ' b 01 ;\)
4'b0100: \(y=2\) 'b10;
4'b1000: \(y=2\) 'b11;
default: \(y=2\) 'bxx;
endcase
end

All cases are matched in parallel.

\section*{Encoder Example (cont.)}

This circuit would be simplified during synthesis to take advantage of constant values as follows and other Boolean equalities:

A similar simplification would be applied to the if-else version also.```

