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❑ Three representations for 
combinational logic: 
▪ truth tables,  
▪ graphical (logic gates), and  
▪ algebraic equations 

❑ Boolean Algebra 
❑ Boolean Simplification 
❑ Multi-level Logic, NAND/NOR, 

XOR
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Combinational Logic (CL) Defined

yi = fi(x0 , . . . . , xn-1), where x, y are {0,1}.  
 Y is a function of only X.  

❑ If we change X, Y will change immediately (well almost!).  
❑ There is an implementation dependent delay from X to Y. 
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CL Block Example #1

Truth Table Description: 

Boolean Equation: 

 y0 = (x0 AND not(x1))  

  OR (not(x0) AND x1) 

     y0 = x0x1' + x0'x1 

Gate Representation: 

 

How would we prove that all three representations are equivalent?
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Boolean Algebra/Logic Circuits
❑ Why are they called “logic circuits”?  
❑ Logic: The study of the principles of reasoning. 
❑ The 19th Century Mathematician, George Boole, developed 

a math. system (algebra) involving logic, Boolean Algebra.   
❑ His variables took on TRUE, FALSE 
❑ Later Claude Shannon (father of information theory) 

showed (in his Master's thesis!) how to map Boolean 
Algebra to digital circuits: 

❑ Primitive functions of Boolean Algebra:
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• Theorem: Any Boolean function that can be expressed as a truth table can be 
expressed using NAND and NOR. 
▪ Proof sketch: 

▪ How would you show that either NAND or NOR is sufficient?

Other logic functions of 2 variables (x,y)

Look at NOR and NAND:
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Relationship Among Representations
* Theorem: Any Boolean function that can be expressed as a truth table can be 

written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?



EE141
 9

CL Block Example – 4 Bit Adder

  
        R = A + B,  
        c is carry out

• Truth Table Representation:

In general: 2n rows for n inputs.  
Is there a more efficient (compact) way to specify this function? 

256 rows!
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4-bit Adder Example
❑ Motivate the adder circuit design 

by hand addition: 

❑ Add a0 and b0 as follows:

• Add a1 and b1 as follows:

carry to next 
stage

r = a XOR b = a ⊕ b 
c = a AND b = ab r = a ⊕ b ⊕ ci 

co = ab + aci + bci
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4-bit Adder Example
❑ In general: 

ri = ai ⊕ bi ⊕ cin 

cout = aicin + aibi + bicin = cin(ai + bi) + aibi 

❑ Now, the 4-bit adder: “Full adder cell”

“ripple” adder
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4-bit Adder Example
❑ Graphical Representation of FA-cell 

ri = ai ⊕ bi ⊕ cin 

cout = aicin + aibi + bicin

• Alternative Implementation (with 
only 2-input gates): 

ri = (ai ⊕ bi) ⊕ cin 

cout = cin(ai + bi) + aibi
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Boolean Algebra
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Some Laws of Boolean Algebra
Duality: A dual of a Boolean expression is derived by interchanging OR and 

AND operations, and 0s and 1s (literals are left unchanged).

Any law that is true for an expression is also true for its dual. 

Operations with 0 and 1: 
 x + 0 = x x * 1 = x 
 x + 1 = 1 x * 0 = 0 
Idempotent Law: 
 x + x = x x  x = x 
Involution Law: 
 (x’)’ = x 
Laws of Complementarity: 
 x + x’ = 1 x  x’ = 0 
Commutative Law: 
 x + y = y + x   x  y = y  x



EE141
 16

Some Laws of Boolean Algebra (cont.)
Associative Laws: 
 (x + y) + z = x + (y + z)  x y z = x (y z) 

Distributive Laws: 
 x (y + z) = (x y) + (x z)  x +(y z) = (x + y)(x + z) 

“Simplification” Theorems: 
     x y + x y’ = x   (x + y) (x + y’) = x 

x + x y = x    x (x + y) = x 

DeMorgan’s Law: 
 (x + y + z + …)’ = x’y’z’  (x y z …)’ = x’ + y’ +z’ 

Theorem for Multiplying and Factoring: 
 (x + y) (x’ + z) = x z + x’ y 
Consensus Theorem: 
 x y + y z + x’ z = (x + y) (y + z) (x’ + z) 
     x y + x’ z = (x + y) (x’ + z)
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DeMorgan's Law
(x + y)' = x' y'

(x y)' = x' + y'

Exhaustive 
Proof

Exhaustive 
Proof
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Relationship Among Representations
* Theorem: Any Boolean function that can be expressed as a truth table can be 

written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?
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Canonical Forms
❑ Standard form for a Boolean expression - unique algebraic expression 

directly from a true table (TT) description. 
❑ Two Types: 

* Sum of Products (SOP) 
* Product of Sums (POS)

• Sum of Products (disjunctive normal form, minterm expansion).  Example: 

Minterms     a b c  f f' 
a'b'c'     0 0 0  0 1 
a'b'c'     0 0 1  0 1 
a'bc'     0 1 0  0 1 
a'bc     0 1 1  1 0 
ab'c'     1 0 0  1 0 
ab'c     1 0 1  1 0 
abc'     1 1 0  1 0 
abc     1 1 1  1 0 

One product (and) term for each 1 in f: 
 f = a'bc + ab'c' + ab'c + abc' + abc 
 f' = a'b'c' + a'b'c + a'bc'

What is the cost?
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Sum of Products (cont.)
Canonical Forms are usually not minimal: 
Our Example: 

f  = a'bc + ab'c' + ab'c + abc' +abc  (xy' + xy = x)  
   = a'bc + ab' + ab  
   = a'bc + a                 (x'y + x = y + x) 
   = a + bc 

 f' = a'b'c' + a'b'c + a'bc' 
     = a'b' + a'bc' 
     = a' ( b' + bc' ) 
     = a' ( b' + c' ) 
     = a'b' + a'c'



EE141
 21

Canonical Forms
• Product of Sums (conjunctive normal form, maxterm expansion).  

 Example: 
maxterms    a b c  f  f' 

a+b+c    0 0 0  0 1 

a+b+c'    0 0 1  0 1 

a+b'+c    0 1 0  0 1 

a+b'+c'      0 1 1  1 0 
a'+b+c    1 0 0  1 0 

a'+b+c'       1 0 1  1 0 
a'+b'+c    1 1 0  1 0 

a'+b'+c'    1 1 1  1 0 

One sum (or) term for each 0 in f: 
   f = (a+b+c)(a+b+c')(a+b'+c) 
   f' = (a+b'+c')(a'+b+c)(a'+b+c') 
  (a'+b'+c)(a+b+c')
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Algebraic Simplification Example
Ex: full adder (FA) carry out function (in canonical 

form): 
Cout = a’bc + ab’c + abc’ + abc
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Algebraic Simplification
Cout = a’bc + ab’c + abc’ + abc 
        = a’bc + ab’c + abc’ + abc + abc 
        = a’bc + abc + ab’c + abc’ + abc 
        = (a’ + a)bc + ab’c + abc’ + abc 
        = (1)bc + ab’c + abc’ + abc 
        = bc + ab’c + abc’ + abc + abc 
          = bc + ab’c + abc + abc’ + abc 
          = bc + a(b’ +b)c + abc’ +abc 
        = bc + a(1)c + abc’ + abc 
        = bc + ac + ab(c’ + c) 
          = bc + ac + ab(1) 
          = bc + ac + ab
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Outline for remaining CL Topics
❑ K-map method of two-level logic 

simplification 
❑ Multi-level Logic 
❑ NAND/NOR networks 
❑ EXOR revisited
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Algorithmic Two-level Logic Simplication

ab f
00 0
01 0
10 1
11 1

ab g
00 1
01 0
10 1
11 0

Key tool: The Uniting Theorem:
xy’ + xy = x (y’ + y) = x (1) = x

f = ab’ + ab = a(b’+b) = a

g = a’b’+ab’ = (a’+a)b’ =b’

b values change within the on-set rows
a values don’t change
b is eliminated, a remains

b values stay the same
a values changes
b’ remains, a is eliminated
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Karnaugh Map Method
❑ K-map is an alternative method of representing the 

TT and to help visual the adjacencies.
Note: “gray code” labeling.
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Karnaugh Map Method
❑ Adjacent groups of 1’s represent product terms 
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K-map Simplification
1. Draw K-map of the appropriate number of variables 

(between 2 and 6) 
2. Fill in map with function values from truth table. 
3. Form groups of 1’s. 

✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, 
…, 2x2, 2x4, …) 

✓ Form as large as possible groups and as few groups as possible. 
✓ Groups can overlap (this helps make larger groups) 
✓ Remember K-map is periodical in all dimensions (groups can cross 

over edges of map and continue on other side) 
4. For each group write a product term.  

▪ the term includes the “constant” variables (use the 
uncomplemented variable for a constant 1 and complemented 
variable for constant 0) 

5. Form Boolean expression as sum-of-products.

30
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K-maps (cont.)
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Product-of-Sums Version
1. Form groups of 0’s instead of 1’s. 
2. For each group write a sum term.  

▪ the term includes the “constant” variables (use the 
uncomplemented variable for a constant 0 and complemented 
variable for constant 1) 

3. Form Boolean expression as product-of-sums.
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BCD incrementer example

a b c d   w x y z 
0 0 0 0   0 0 0 1 
0 0 0 1   0 0 1 0 
0 0 1 0   0 0 1 1 
0 0 1 1   0 1 0 0 
0 1 0 0   0 1 0 1 
0 1 0 1   0 1 1 0 
0 1 1 0   0 1 1 1 
0 1 1 1   1 0 0 0 
1 0 0 0   1 0 0 1 
1 0 0 1   0 0 0 0 
1 0 1 0   -  -  -  - 
1 0 1 1   -  -  -  - 
1 1 0 0   -  -  -  - 
1 1 0 1   -  -  -  - 
1 1 1 0   -  -  -  - 
1 1 1 1   -  -  -  -

Binary Coded Decimal

1
0

2
3
4
5
6
7
8
9

+1

4

4

{a,b,c,d}

{w,x,y,z}
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BCD Incrementer Example
❑ Note one map for each output variable. 
❑ Function includes “don’t cares” (shown as “-” in the 

table). 
▪ These correspond to places in the function where we 

don’t care about its value, because we don’t expect 
some particular input patterns. 

▪  We are free to assign either 0 or 1 to each don’t care in 
the function, as a means to increase group sizes. 

❑ In general, you might choose to write product-of-
sums or sum-of-products according to which one 
leads to a simpler expression.
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BCD incrementer example

w =   

x = 

y =  

z = 

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10
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Higher Dimensional K-maps
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Boolean Simplification 
– Multi-level Logic
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Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => 50 transistors 
delay: 3-input OR gate delay + 7-input AND gate delay
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Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => 50 transistors 
delay: 3-input OR gate delay + 7-input AND gate delay 

❑ Factored form: 
 x = (a + b +c)(d + e)f + g 

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND 
      => 20 transistors 
delay: 3-input OR + 3-input AND + 2-input OR 

Footnote: NAND would be used in 
place of all ANDs and ORs.
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Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => 50 transistors 
delay: 3-input OR gate delay + 7-input AND gate delay 

❑ Factored form: 
 x = (a + b +c)(d + e)f + g 

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND 
      => 20 transistors 
delay: 3-input OR + 3-input AND + 2-input OR  

Which is faster? 
In general: Using multiple levels (more than 2) will reduce the cost.  Sometimes also 

delay. 
Sometimes a tradeoff between cost and delay.

Footnote: NAND would be used in 
place of all ANDs and ORs.
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Multi-level Combinational Logic
Another Example:  F = abc + abd +a'c'd' + b'c'd'   
     let x = ab  y = c+d 
       f = xy + x'y' 

No convenient hand methods exist for multi-level logic simplification: 
a) CAD Tools use sophisticated algorithms and heuristics 

Guess what?  These problems tend to be NP-complete 
b) Humans and tools often exploit some special structure (example adder)

Incorporates fanout.
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NAND-NAND & NOR-NOR Networks
DeMorgan's Law Review: 
  (a + b)' = a' b'        (a b)' = a' + b' 
   a + b   = (a' b')'      (a b)  = (a' + b')' 

push bubbles or introduce in pairs or remove pairs:         
(x')' = x.
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NAND-NAND & NOR-NOR Networks
❑ Mapping from AND/OR to NAND/NAND
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Multi-level Networks
Convert to NANDs: 
F = a(b + cd) + bc'
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EXOR Function Implementations
Parity, addition mod 2 

x ⊕ y = x’y + xy’ 
  x y  xor  xnor 
 0 0    0    1     
 0 1    1     0   
 1 0    1     0 
 1 1    0     1       

Another approach:


