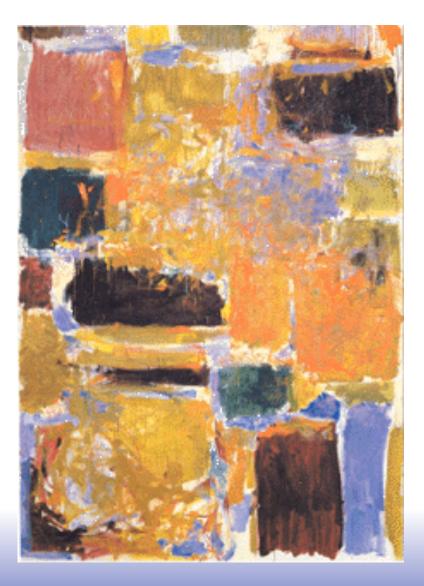


EECS 151/251A Spring 2019 Digital Design and Integrated Circuits

Instructor: John Wawrzynek

Lecture 6

Outline

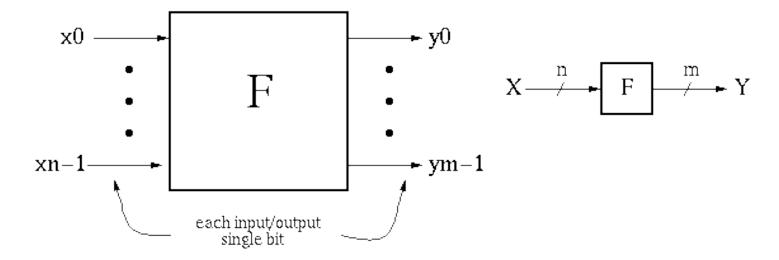


Three representations for combinational logic:

- truth tables,
- graphical (logic gates), and
- algebraic equations
- Boolean Algebra
- Boolean Simplification
- Multi-level Logic, NAND/NOR, XOR

Representations of Combinational Logic

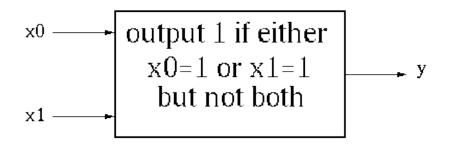
Combinational Logic (CL) Defined



 $y_i = f_i(x0, ..., xn-1)$, where x, y are {0,1}. Y is a function of only X.

If we change X, Y will change immediately (well almost!).
 There is an *implementation dependent* delay from X to Y.

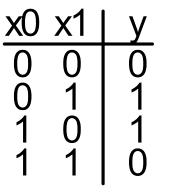
CL Block Example #1

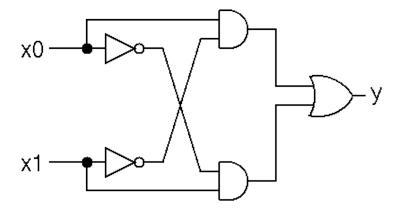


Boolean Equation: $y_0 = (x_0 \text{ AND not}(x_1))$ OR (not(x_0) AND x_1) $y_0 = x_0x_1' + x_0'x_1$

Truth Table Description:

Gate Representation:



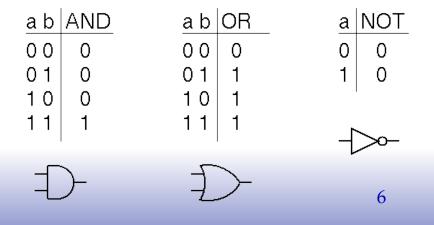


How would we prove that all three representations are equivalent?

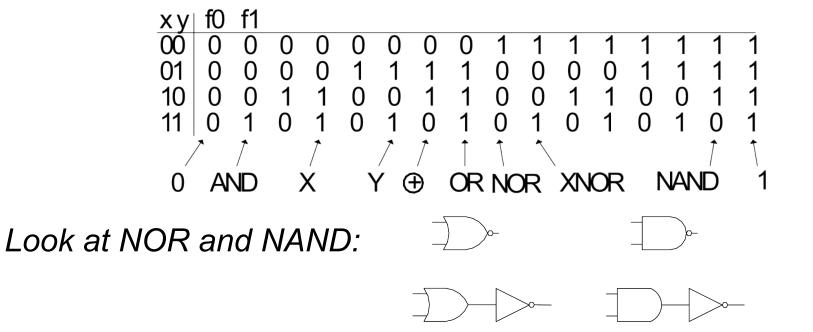
Boolean Algebra/Logic Circuits

Why are they called "logic circuits"?

- □ Logic: The study of the principles of reasoning.
- The 19th Century Mathematician, George Boole, developed a math. system (algebra) involving logic, Boolean Algebra.
- □ His variables took on TRUE, FALSE
- Later Claude Shannon (father of information theory) showed (in his Master's thesis!) how to map Boolean Algebra to digital circuits:
- Primitive functions of Boolean Algebra:



Other logic functions of 2 variables (x,y)



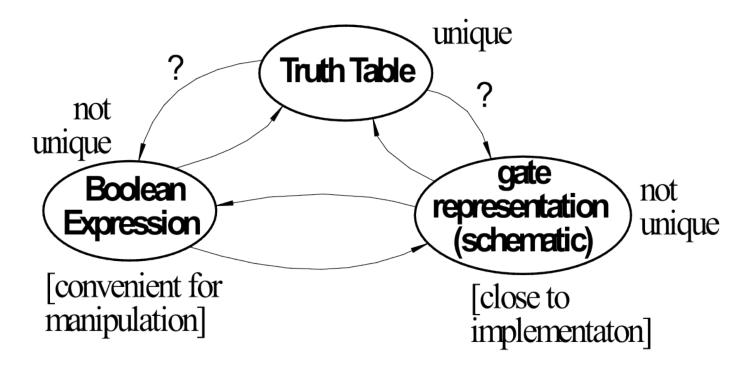
- Theorem: Any Boolean function that can be expressed as a truth table can be expressed using NAND and NOR.
 - Proof sketch:

$$- = NOT \qquad = - = AND$$
$$= - = OR$$

How would you show that either NAND or NOR is sufficient?

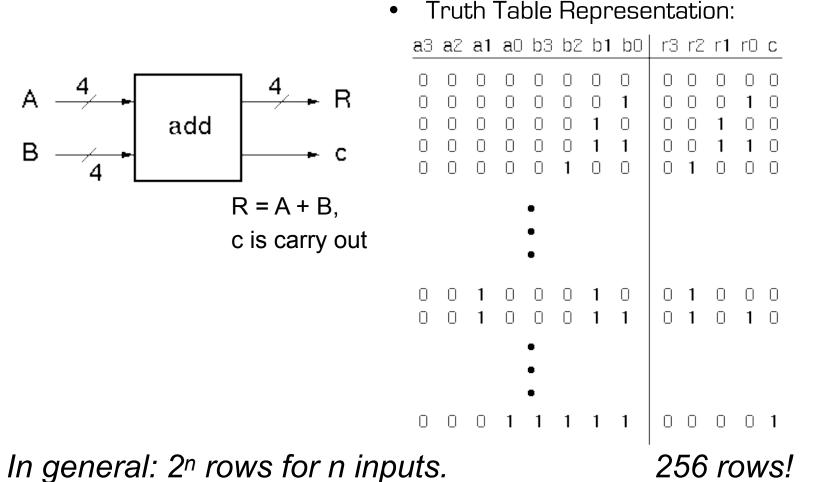
Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.



How do we convert from one to the other?

CL Block Example – 4 Bit Adder



Is there a more efficient (compact) way to specify this function?

4-bit Adder Example

 Motivate the adder circuit design by hand addition:

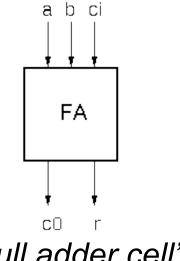
□ Add a0 and b0 as follows:

a b	
0 0 0 1 1 0 1 1	0 0 stage
01	1 0
1 0	1 0
1 1	01
r = a	XOR

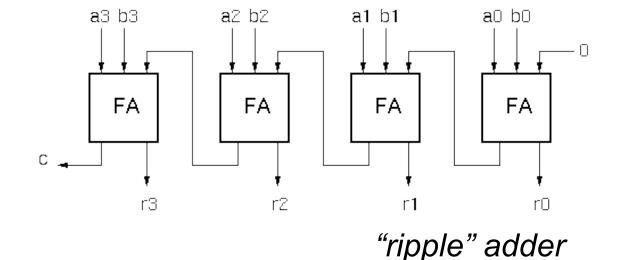
• Add a1 and b1 as follows:

	сі	а	b	l r	СО
	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1
ľ	r = ;	a ⊕	b ⊕) C _i	
(CO =	= at) + ($aC_i +$	bc _i

4-bit Adder Example □ In general: $r_i = a_i \oplus b_i \oplus c_{in}$ $c_{out} = a_i c_{in} + a_i b_i + b_i c_{in} = c_{in}(a_i + b_i) + a_i b_i$



□ Now, the 4-bit adder:



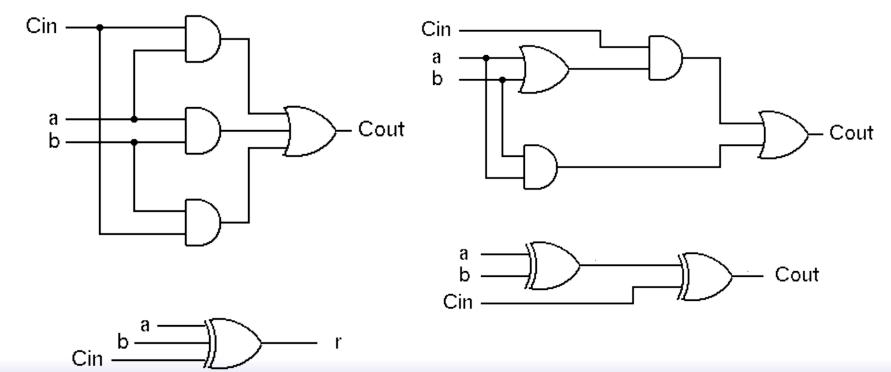
4-bit Adder Example

□ Graphical Representation of FA-cell $r_i = a_i \oplus b_i \oplus c_{in}$ $c_{out} = a_i c_{in} + a_i b_i + b_i c_{in}$

• Alternative Implementation (with only 2-input gates):

$$\mathbf{r_i} = (\mathbf{a_i} \oplus \mathbf{b_i}) \oplus \mathbf{c_{in}}$$

$$c_{out} = c_{in}(a_i + b_i) + a_i b_i$$



Boolean Algebra

Boolean Algebra

Set of elements *B*, binary operators $\{+, \bullet\}$, unary operation $\{'\}$, such that the following axioms hold :

- 1. *B* contains at least two elements *a*, *b* such that $a \neq b$.
- 2. Closure : a, b in B,

a + b in B, $a \bullet b$ in B, a' in B.

3. Communitive laws :

$$a+b=b+a, a \bullet b=b \bullet a.$$

4. Identities : 0, 1 in B

 $a + 0 = a, \quad a \bullet 1 = a.$

5. Distributive laws :

$$a + (b \bullet c) = (a + b) \bullet (a + c), \ a \bullet (b + c) = a \bullet b + a \bullet c.$$

6. Complement :

$$a + a' = 1, \ a \bullet a' = 0$$

 $B = \{0,1\}, + = OR, \bullet = AND, ' = NOT$ is a valid Boolean Algebra. $D = 00|0 \qquad 00|0 \qquad 0|1 \\ 01|1 \qquad 01|0 \qquad 1|0 \\ 10|1 \qquad 10|0 \\ 11|1 \qquad 11|1 \qquad 01|0 \\ 11$

Some Laws of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and 0s and 1s (literals are left unchanged).

$$\{F(x_1, x_2, ..., x_n, 0, 1, +, \bullet)\}^D = \{F(x_1, x_2, ..., x_n, 1, 0, \bullet, +)\}$$

Any law that is true for an expression is also true for its dual.

Operations with 0 and 1: x + 0 = x x * 1 = x x + 1 = 1 x * 0 = 0Idempotent Law: x + x = x x = xInvolution Law: (x')' = xLaws of Complementarity: x + x' = 1 x = x' = 0Commutative Law: x + y = y + x x = y = y = x

Some Laws of Boolean Algebra (cont.)

Associative Laws: (x + y) + z = x + (y + z)

Distributive Laws: x (y + z) = (x y) + (x z)

"Simplification" Theorems: x y + x y' = x x + x y = x x y z = x (y z)

x + (y z) = (x + y)(x + z)

(x + y) (x + y') = xx (x + y) = x

DeMorgan's Law: (x + y + z + ...)' = x'y'z'

(x y z ...)' = x' + y' +z'

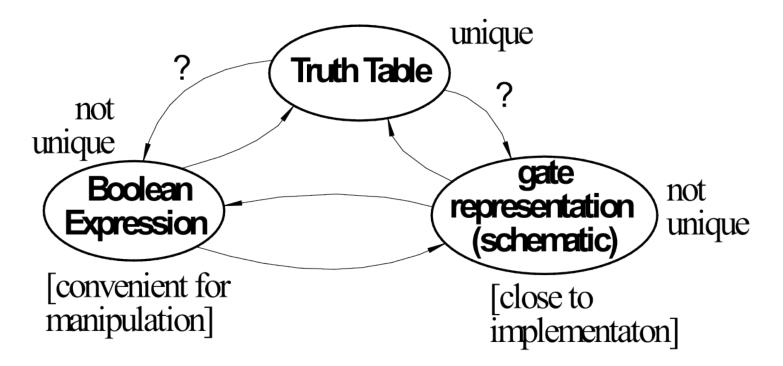
Theorem for Multiplying and Factoring: (x + y) (x' + z) = x z + x' yConsensus Theorem: x y + y z + x' z = (x + y) (y + z) (x' + z)x y + x' z = (x + y) (x' + z)

DeMorgan's Law

(x + y)' = x' y'	Exhaustive Proof	x y x' y' 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0	$ \begin{array}{cccc} (x + y)' & x'y' \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} $
(x y)' = x' + y'	Exhaustive Proof	x y x' y' 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0	(x y)' x' + y' 1 1 1 1 1 1 1 0 0

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.



How do we convert from one to the other?

Canonical Forms

Standard form for a Boolean expression - unique algebraic expression directly from a true table (TT) description.

Two Types:

- * Sum of Products (SOP)
- * Product of Sums (POS)
- <u>Sum of Products</u> (disjunctive normal form, <u>minterm</u> expansion). Example:

Minterms	a b c	ff'	
a'b'c'	0 0 0	01	
a'b'c'	0 0 1	01	One product (and) term for each 1 in f:
a'bc'	0 1 0	01	f = a'bc + ab'c' + ab'c + abc' + abc
a'bc	0 1 1	10	f' = a'b'c' + a'b'c + a'bc'
ab'c'	1 0 0	10	
ab'c	101	10	
abc'	1 1 0	10	What is the cost?
abc	111	10	

Sum of Products (cont.)

Canonical Forms are usually not minimal:

Our Example:

f = a'bc + ab'c' + ab'c + abc' + abc (xy' + xy = x)= a'bc + ab' + ab = a'bc + a (x'y + x = y + x) = a + bc

```
f' = a'b'c' + a'b'c + a'bc'
= a'b' + a'bc'
= a' (b' + bc')
= a' (b' + c')
= a'b' + a'c'
```

Canonical Forms

• <u>Product of Sums</u> (conjunctive normal form, <u>maxterm</u> expansion). Example:

maxterms	a b_c_	f f'
a+b+c	0 0 0	01
a+b+c′	0 0 1	0 1 One sum (or) term for each 0 in f:
a+b '+c	0 1 0	0 1 $f = (a+b+c)(a+b+c')(a+b'+c)$
a+b '+c '	0 1 1	$1 0 \qquad f' = (a+b'+c')(a'+b+c)(a'+b+c') (a'+b'+c)(a+b+c')$
a '+b+c	1 0 0	1 0
a '+b+c '	1 0 1	1 0
a '+b '+c	1 1 0	1 0
a '+b '+c '	1 1 1	1 0
		I

Boolean Simplification

Algebraic Simplification Example

- Ex: full adder (FA) carry out function (in canonical form):
- Cout = a'bc + ab'c + abc' + abc

Algebraic Simplification

Cout = a'bc + ab'c + abc' + abc

- = a'bc + ab'c + abc' + abc + abc
- = a'bc + abc + ab'c + abc' + abc
- = (a' + a)bc + ab'c + abc' + abc
- = **[1]**bc + ab'c + abc' + abc
- = bc + ab'c + abc' + abc + abc
- = bc + ab'c + abc + abc' + abc
- = bc + a(b' +b)c + abc' +abc
- = bc + a[1]c + abc' + abc
- = bc + ac + ab[c' + c]
- = bc + ac + ab[1]
- = bc + ac + ab

Outline for remaining CL Topics

- K-map method of two-level logic simplification
- Multi-level Logic
- NAND/NOR networks
- EXOR revisited

Algorithmic Two-level Logic Simplication Key tool: <u>The Uniting Theorem</u>:

$$xy' + xy = x(y' + y) = x(1) = x$$

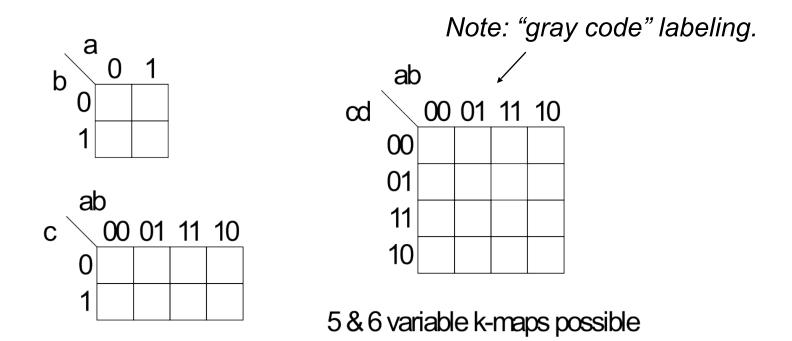
ab	f	f = ab' + ab = a(b'+b) = a
00	0	b values change within the on-set rows
01	0	a values don't change
10	1	
11	1	b is eliminated, a remains
ab	a	g = a'b'+ab' = (a'+a)b' =b'
00	3 1	
		b values stay the same
01	0	
10	1	a values changes

b' remains, a is eliminated

11 0

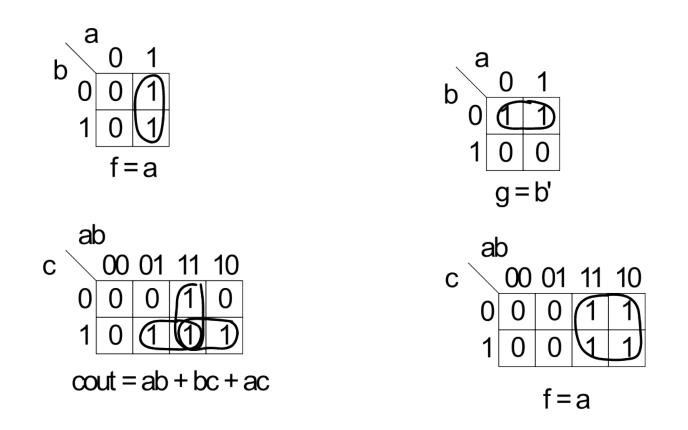
Karnaugh Map Method

K-map is an alternative method of representing the TT and to help visual the adjacencies.



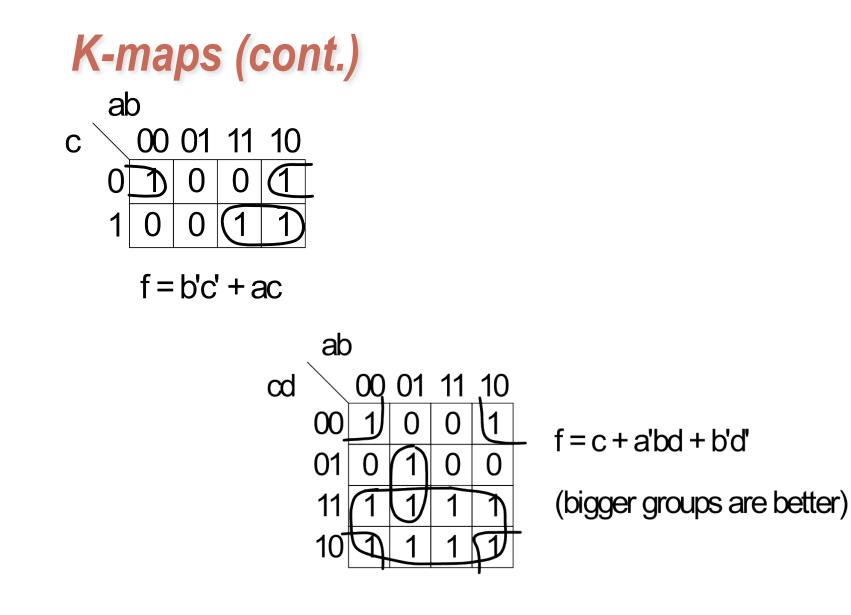
Karnaugh Map Method

Adjacent groups of 1's represent product terms



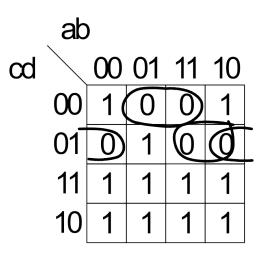
K-map Simplification

- 1. Draw K-map of the appropriate number of variables (between 2 and 6)
- 2. Fill in map with function values from truth table.
- 3. Form groups of 1's.
 - ✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, ..., 2x2, 2x4, ...)
 - ✓ Form as large as possible groups and as few groups as possible.
 - ✓ Groups can overlap (this helps make larger groups)
 - ✓ Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
- 4. For each group write a product term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)
- 5. Form Boolean expression as sum-of-products.



Product-of-Sums Version

- 1. Form groups of 0's instead of 1's.
- 2. For each group write a sum term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)
- 3. Form Boolean expression as product-of-sums.



f = (b' + c + d)(a' + c + d')(b + c + d')

BCD incrementer example

Binary Coded Decimal

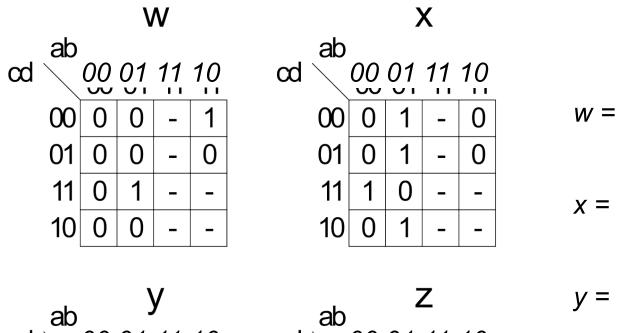
1111	1 1 0 0	1011		9 1001 0000	8 1000 1001	7 0111 1000	<u>6</u> 0110 0111	0101 0110	4 0100 0101	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0010 0011	1 0001 0010	0 0000 0001	abcd wxyz
------	---------	------	--	-------------	-------------	-------------	--------------------	-----------	-------------	--	-------------	-------------	-------------	-----------

{a,b,c,d} 4 +1 4 { w,x,y,z}

BCD Incrementer Example

- □ Note one map for each output variable.
- Function includes "don't cares" (shown as "-" in the table).
 - These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
 - We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- In general, you might choose to write product-ofsums or sum-of-products according to which one leads to a simpler expression.

BCD incrementer example

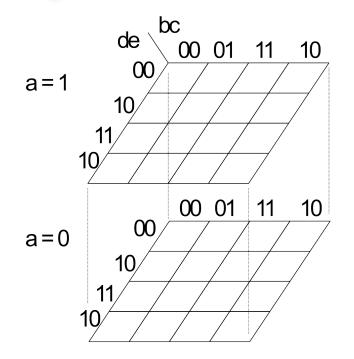


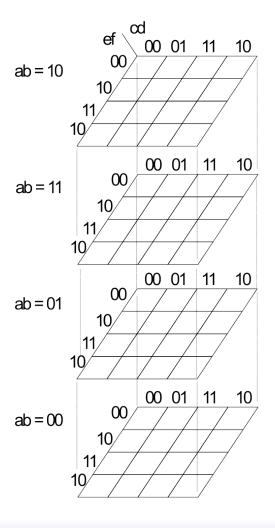
00 01 ∞ 10 11 $\mathbf{v}\mathbf{v}$ νı . . 11 00 1 1 _ 01 0 0 0 _ 11 0 0 _ -10 1 --

V =

Z =

Higher Dimensional K-maps





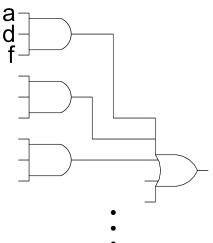
Boolean Simplification – Multi-level Logic

Example: reduced sum-of-products form

 x = adf + aef + bdf + bef + cdf + cef + g

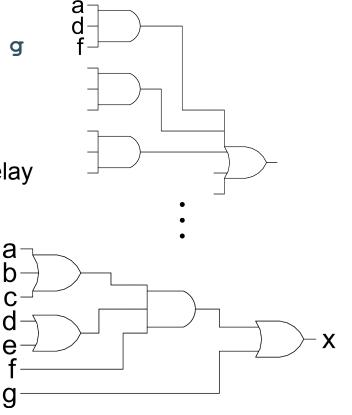
 Implementation in 2-levels with gates:

 <u>cost:</u> 1 7-input OR, 6 3-input AND
 => 50 transistors
 <u>delay:</u> 3-input OR gate delay + 7-input AND gate delay



□ Factored form:

x = (a + b +c) (d + e) f + g cost: 1 3-input OR, 2 2-input OR, 1 3-input AND => 20 transistors delay: 3-input OR + 3-input AND + 2-input OR



Footnote: NAND would be used in place of all ANDs and ORs.

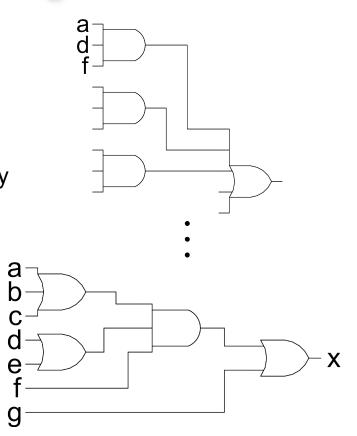
Example: reduced sum-of-products form

 x = adf + aef + bdf + bef + cdf + cef + g

 Implementation in 2-levels with gates:

 <u>cost:</u> 1 7-input OR, 6 3-input AND
 => 50 transistors
 <u>delay:</u> 3-input OR gate delay + 7-input AND gate delay

Factored form: x = (a + b +c) (d + e) f + g <u>cost:</u> 1 3-input OR, 2 2-input OR, 1 3-input AND => 20 transistors <u>delay:</u> 3-input OR + 3-input AND + 2-input OR

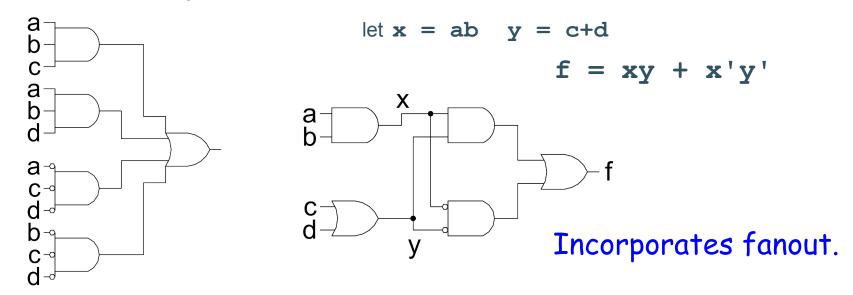


Footnote: NAND would be used in place of all ANDs and ORs.

Which is faster?

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay. Sometimes a tradeoff between cost and delay.

Another Example: F = abc + abd + a'c'd' + b'c'd'



No convenient hand methods exist for multi-level logic simplification:

a) CAD Tools use sophisticated algorithms and heuristics

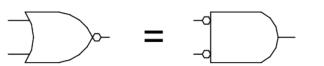
Guess what? These problems tend to be NP-complete

b) Humans and tools often exploit some special structure (example adder)

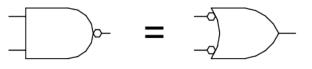
NAND-NAND & NOR-NOR Networks

DeMorgan's Law Review: (a + b)' = a' b'

(a b)' = a' + b' (a b) = (a' + b')'

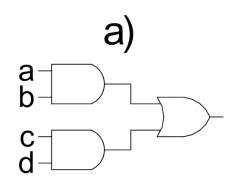


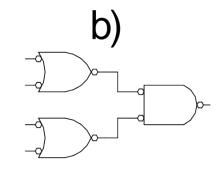
a + b = (a' b')'

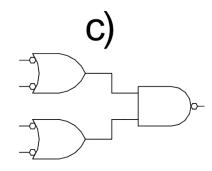


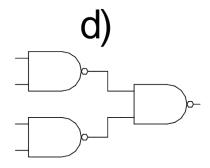
push bubbles or introduce in pairs or remove pairs: (x')' = x.

NAND-NAND & NOR-NOR Networks Mapping from AND/OR to NAND/NAND



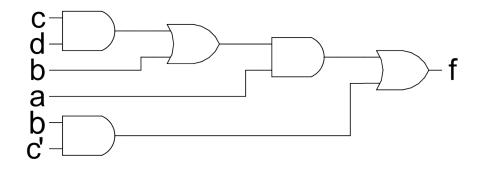






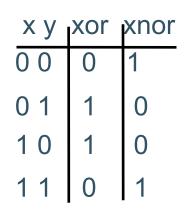
Multi-level Networks

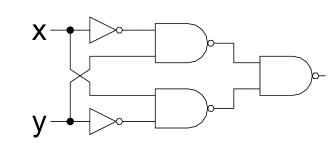
Convert to NANDs: F = a(b + cd) + bc'

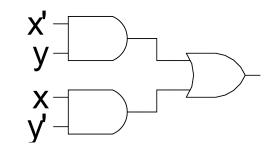


EXOR Function Implementations

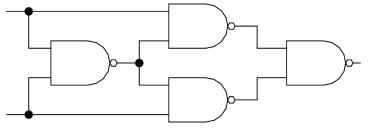
Parity, addition mod 2 $x \oplus y = x'y + xy'$

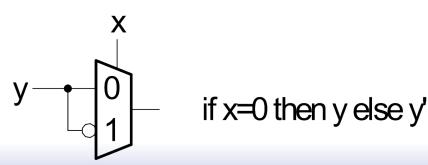






Another approach:





44