
EE141

EECS 151/251A 
Spring 2019 
Digital	Design	and	
Integrated	Circuits
Instructor:		
John	Wawrzynek

Lecture 6

EE141

Outline

 2

❑ Three representations for
combinational logic:
▪ truth tables,
▪ graphical (logic gates), and
▪ algebraic equations

❑ Boolean Algebra
❑ Boolean Simplification
❑ Multi-level Logic, NAND/NOR,

XOR

EE141

Representations of
Combinational Logic

EE141
 4

Combinational Logic (CL) Defined

yi = fi(x0 , , xn-1), where x, y are {0,1}.
 Y is a function of only X.

❑ If we change X, Y will change immediately (well almost!).
❑ There is an implementation dependent delay from X to Y.

EE141
 5

CL Block Example #1

Truth Table Description:

Boolean Equation:

 y0 = (x0 AND not(x1))

 OR (not(x0) AND x1)

 y0 = x0x1' + x0'x1

Gate Representation:

How would we prove that all three representations are equivalent?

EE141
 6

Boolean Algebra/Logic Circuits
❑ Why are they called “logic circuits”?
❑ Logic: The study of the principles of reasoning.
❑ The 19th Century Mathematician, George Boole, developed

a math. system (algebra) involving logic, Boolean Algebra.
❑ His variables took on TRUE, FALSE
❑ Later Claude Shannon (father of information theory)

showed (in his Master's thesis!) how to map Boolean
Algebra to digital circuits:

❑ Primitive functions of Boolean Algebra:

EE141
 7

• Theorem: Any Boolean function that can be expressed as a truth table can be
expressed using NAND and NOR.
▪ Proof sketch:

▪ How would you show that either NAND or NOR is sufficient?

Other logic functions of 2 variables (x,y)

Look at NOR and NAND:

EE141
 8

Relationship Among Representations
* Theorem: Any Boolean function that can be expressed as a truth table can be

written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?

EE141
 9

CL Block Example – 4 Bit Adder

 R = A + B,
 c is carry out

• Truth Table Representation:

In general: 2n rows for n inputs.
Is there a more efficient (compact) way to specify this function?

256 rows!

EE141
 10

4-bit Adder Example
❑ Motivate the adder circuit design

by hand addition:

❑ Add a0 and b0 as follows:

• Add a1 and b1 as follows:

carry to next
stage

r = a XOR b = a ⊕ b
c = a AND b = ab r = a ⊕ b ⊕ ci

co = ab + aci + bci

EE141
 11

4-bit Adder Example
❑ In general:

ri = ai ⊕ bi ⊕ cin

cout = aicin + aibi + bicin = cin(ai + bi) + aibi

❑ Now, the 4-bit adder: “Full adder cell”

“ripple” adder

EE141
 12

4-bit Adder Example
❑ Graphical Representation of FA-cell

ri = ai ⊕ bi ⊕ cin

cout = aicin + aibi + bicin

• Alternative Implementation (with
only 2-input gates):

ri = (ai ⊕ bi) ⊕ cin

cout = cin(ai + bi) + aibi

EE141

Boolean Algebra

EE141
 14

Boolean Algebra

EE141
 15

Some Laws of Boolean Algebra
Duality: A dual of a Boolean expression is derived by interchanging OR and

AND operations, and 0s and 1s (literals are left unchanged).

Any law that is true for an expression is also true for its dual.

Operations with 0 and 1:
 x + 0 = x x * 1 = x
 x + 1 = 1 x * 0 = 0
Idempotent Law:
 x + x = x x x = x
Involution Law:
 (x’)’ = x
Laws of Complementarity:
 x + x’ = 1 x x’ = 0
Commutative Law:
 x + y = y + x x y = y x

EE141
 16

Some Laws of Boolean Algebra (cont.)
Associative Laws:
 (x + y) + z = x + (y + z) x y z = x (y z)

Distributive Laws:
 x (y + z) = (x y) + (x z) x +(y z) = (x + y)(x + z)

“Simplification” Theorems:
 x y + x y’ = x (x + y) (x + y’) = x

x + x y = x x (x + y) = x

DeMorgan’s Law:
 (x + y + z + …)’ = x’y’z’ (x y z …)’ = x’ + y’ +z’

Theorem for Multiplying and Factoring:
 (x + y) (x’ + z) = x z + x’ y
Consensus Theorem:
 x y + y z + x’ z = (x + y) (y + z) (x’ + z)
 x y + x’ z = (x + y) (x’ + z)

EE141
 17

DeMorgan's Law
(x + y)' = x' y'

(x y)' = x' + y'

Exhaustive
Proof

Exhaustive
Proof

EE141
 18

Relationship Among Representations
* Theorem: Any Boolean function that can be expressed as a truth table can be

written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?

EE141
 19

Canonical Forms
❑ Standard form for a Boolean expression - unique algebraic expression

directly from a true table (TT) description.
❑ Two Types:

* Sum of Products (SOP)
* Product of Sums (POS)

• Sum of Products (disjunctive normal form, minterm expansion). Example:

Minterms a b c f f'
a'b'c' 0 0 0 0 1
a'b'c' 0 0 1 0 1
a'bc' 0 1 0 0 1
a'bc 0 1 1 1 0
ab'c' 1 0 0 1 0
ab'c 1 0 1 1 0
abc' 1 1 0 1 0
abc 1 1 1 1 0

One product (and) term for each 1 in f:
 f = a'bc + ab'c' + ab'c + abc' + abc
 f' = a'b'c' + a'b'c + a'bc'

What is the cost?

EE141
 20

Sum of Products (cont.)
Canonical Forms are usually not minimal:
Our Example:

f = a'bc + ab'c' + ab'c + abc' +abc (xy' + xy = x)
 = a'bc + ab' + ab
 = a'bc + a (x'y + x = y + x)
 = a + bc

 f' = a'b'c' + a'b'c + a'bc'
 = a'b' + a'bc'
 = a' (b' + bc')
 = a' (b' + c')
 = a'b' + a'c'

EE141
 21

Canonical Forms
• Product of Sums (conjunctive normal form, maxterm expansion).

 Example:
maxterms a b c f f'

a+b+c 0 0 0 0 1

a+b+c' 0 0 1 0 1

a+b'+c 0 1 0 0 1

a+b'+c' 0 1 1 1 0
a'+b+c 1 0 0 1 0

a'+b+c' 1 0 1 1 0
a'+b'+c 1 1 0 1 0

a'+b'+c' 1 1 1 1 0

One sum (or) term for each 0 in f:
 f = (a+b+c)(a+b+c')(a+b'+c)
 f' = (a+b'+c')(a'+b+c)(a'+b+c')
 (a'+b'+c)(a+b+c')

EE141

Boolean
Simplification

EE141
 23

Algebraic Simplification Example
Ex: full adder (FA) carry out function (in canonical

form):
Cout = a’bc + ab’c + abc’ + abc

EE141
 24

Algebraic Simplification
Cout = a’bc + ab’c + abc’ + abc
 = a’bc + ab’c + abc’ + abc + abc
 = a’bc + abc + ab’c + abc’ + abc
 = (a’ + a)bc + ab’c + abc’ + abc
 = (1)bc + ab’c + abc’ + abc
 = bc + ab’c + abc’ + abc + abc
 = bc + ab’c + abc + abc’ + abc
 = bc + a(b’ +b)c + abc’ +abc
 = bc + a(1)c + abc’ + abc
 = bc + ac + ab(c’ + c)
 = bc + ac + ab(1)
 = bc + ac + ab

EE141
 25

Outline for remaining CL Topics
❑ K-map method of two-level logic

simplification
❑ Multi-level Logic
❑ NAND/NOR networks
❑ EXOR revisited

EE141
 26

Algorithmic Two-level Logic Simplication

ab f
00 0
01 0
10 1
11 1

ab g
00 1
01 0
10 1
11 0

Key tool: The Uniting Theorem:
xy’ + xy = x (y’ + y) = x (1) = x

f = ab’ + ab = a(b’+b) = a

g = a’b’+ab’ = (a’+a)b’ =b’

b values change within the on-set rows
a values don’t change
b is eliminated, a remains

b values stay the same
a values changes
b’ remains, a is eliminated

EE141
 27

Karnaugh Map Method
❑ K-map is an alternative method of representing the

TT and to help visual the adjacencies.
Note: “gray code” labeling.

EE141
 28

Karnaugh Map Method
❑ Adjacent groups of 1’s represent product terms

EE141
 29Spring 2013 EECS150 - Lec23-Boolean Page

K-map Simplification
1. Draw K-map of the appropriate number of variables

(between 2 and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1’s.

✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4,
…, 2x2, 2x4, …)

✓ Form as large as possible groups and as few groups as possible.
✓ Groups can overlap (this helps make larger groups)
✓ Remember K-map is periodical in all dimensions (groups can cross

over edges of map and continue on other side)
4. For each group write a product term.

▪ the term includes the “constant” variables (use the
uncomplemented variable for a constant 1 and complemented
variable for constant 0)

5. Form Boolean expression as sum-of-products.

30

EE141
 30

K-maps (cont.)

EE141
 31

Product-of-Sums Version
1. Form groups of 0’s instead of 1’s.
2. For each group write a sum term.

▪ the term includes the “constant” variables (use the
uncomplemented variable for a constant 0 and complemented
variable for constant 1)

3. Form Boolean expression as product-of-sums.

EE141
 32

BCD incrementer example

a b c d w x y z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 - - - -
1 0 1 1 - - - -
1 1 0 0 - - - -
1 1 0 1 - - - -
1 1 1 0 - - - -
1 1 1 1 - - - -

Binary Coded Decimal

1
0

2
3
4
5
6
7
8
9

+1

4

4

{a,b,c,d}

{w,x,y,z}

EE141
 33

BCD Incrementer Example
❑ Note one map for each output variable.
❑ Function includes “don’t cares” (shown as “-” in the

table).
▪ These correspond to places in the function where we

don’t care about its value, because we don’t expect
some particular input patterns.

▪ We are free to assign either 0 or 1 to each don’t care in
the function, as a means to increase group sizes.

❑ In general, you might choose to write product-of-
sums or sum-of-products according to which one
leads to a simpler expression.

EE141
 34

BCD incrementer example

w =

x =

y =

z =

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10

EE141
 35

Higher Dimensional K-maps

EE141

Boolean Simplification
– Multi-level Logic

EE141
 37

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
❑ Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND
 => 50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

EE141
 38

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
❑ Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND
 => 50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

❑ Factored form:
 x = (a + b +c)(d + e)f + g

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND
 => 20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Footnote: NAND would be used in
place of all ANDs and ORs.

EE141
 39

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
❑ Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND
 => 50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

❑ Factored form:
 x = (a + b +c)(d + e)f + g

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND
 => 20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Which is faster?
In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also

delay. 
Sometimes a tradeoff between cost and delay.

Footnote: NAND would be used in
place of all ANDs and ORs.

EE141
 40

Multi-level Combinational Logic
Another Example: F = abc + abd +a'c'd' + b'c'd'
 let x = ab y = c+d
 f = xy + x'y'

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

Incorporates fanout.

EE141
 41

NAND-NAND & NOR-NOR Networks
DeMorgan's Law Review:
 (a + b)' = a' b' (a b)' = a' + b'
 a + b = (a' b')' (a b) = (a' + b')'

push bubbles or introduce in pairs or remove pairs:
(x')' = x.

EE141
 42

NAND-NAND & NOR-NOR Networks
❑ Mapping from AND/OR to NAND/NAND

EE141
 43

Multi-level Networks
Convert to NANDs:
F = a(b + cd) + bc'

EE141
 44

EXOR Function Implementations
Parity, addition mod 2

x ⊕ y = x’y + xy’
 x y xor xnor
 0 0 0 1
 0 1 1 0
 1 0 1 0
 1 1 0 1

Another approach:

