
EE141

EECS 151/251A 
Spring	2019  
Digital	Design	and	
Integrated	Circuits
Instructors:		
Wawrzynek

Lecture 4

EE141

Administrativia

 2

EE141

Verilog – So Far
❑ Combinational Logic Specification
❑ Two types of description:
▪ Structural: design as a composition of

blocks (also called a netlist)
– Maps directly into hardware

▪ Behavioral: design as a set of equations
– Requires “compiler” (synthesis tool) to generate

hardware

 3

EE141

Sequential Elements

EE141
 5

Only Two Types of Circuits Exist
❑ Combinational Logic Blocks (CL)
❑ State Elements (registers)

• State elements are
mixed in with CL
blocks to control
the flow of data.

Register file

or

Memory Block

Address
Input Data

Output Data
Write Control

clock

• Sometimes used in
large groups by
themselves for
“long-term” data
storage.

EE141
 6

Register Details…What’s inside?

❑ n instances of a “Flip-Flop”
❑ Flip-flop name because the output flips and flops

between 0 and 1
❑ D is “data”, Q is “output”
❑ Also called “d-type Flip-Flop”

EE141
 7

Flip-flop Timing Waveforms
❑ Edge-triggered d-type flip-flop

❑ This one is “positive edge-triggered”
❑ “On the rising edge of the clock, the input d is

sampled and transferred to the output. At all other
times, the input d is ignored.”

❑ Example waveforms:

EE141
 8

Accumulator Example

❑ We need something like this:

Assume X is a vector of N integers, presented to the input of
our accumulator circuit one at a time (one per clock cycle), so
that after N clock cycles, S hold the sum of all N numbers.

 S=0; Repeat N times

 S = S + X;

❑ But not quite.

❑ Need to use the clock signal to
hold up the feedback to match
up with the input signal.

Xi

EE141
 9

Accumulator
❑ Put register in feedback path.
❑ On each clock cycle the

register prevents the new value
from reaching the input to the
adder prematurely. (The new
value just waits at the input of
the register)

Si

Si-1

Timing:

Si

Si-1

EE141
 10

Flip-Flop Timing Details

❑ Three important times associated with flip-flops:
▪ Setup time - How long d must be stable before the rising edge of CLK
▪ Hold time - How long D must be stable after the rising edge of CLK
▪ Clock-to-q delay – Propagation delay after rising edge of the CLK

EE141
 11

Accumulator Revisited
❑ Note:

– Reset signal
(synchronous)

– Timing of X signal is not
known without
investigating the circuit
that supplies X. Here
we assume it comes
just after Si-1.

– Observe transient
behavior of Si.

EE141
 12

Level-sensitive Latch Inside Flip-flop

Positive Level-sensitive latch:

Positive Edge-triggered flip-flop built
from two level-sensitive latches:

When CLK is high, latch is transparent, when clk is low, latch
retains previous value.

EE141

Sequential Elements
in Verilog

EE141
 14

State Elements in Verilog
Always blocks are the only way to specify the “behavior” of

state elements. Synthesis tools will turn state element
behaviors into state element instances.

module dff(q, d, clk, set, rst);

 input d, clk, set, rst;

 output q;

 reg q;

 always @(posedge clk)

 if (rst)

 q <= 1’b0;

 else if (set)

 q <= 1’b1;

 else

 q <= d;

endmodule

D-flip-flop with synchronous set and reset example:

keyword

“always @ (posedge clk)” is key
to flip-flop generation.

This gives priority to
reset over set and set

over d.

On FPGAs, maps to native flip-flop.

d s
q

rclk

set

rst

Unlike logic gates, their are no primitive flip-flops in Verilog. Although, it
is possible to instantiate FPGA or Standard-cell specific flip-flops.

EE141

The Sequential always Block

module comb(input a, b, sel, 
 output reg out);
 always @(*) begin

 if (sel) out = b;
 else out = a;
 end
endmodule

module seq(input a, b, sel, clk,  
 output reg out);
 always @(posedge clk) begin

 if (sel) out <= b;
 else out <= a;
 end
endmodule

Combinational Sequential

 15

EE141

Latches vs. Flip-Flops

module flipflop
(
 input clk,
 input d,  
 output reg q
);

 always @(posedge clk)
 begin

 q <= d;
 end

endmodule

Flip-Flop Latch

module latch
(
 input clk,
 input d,  
 output reg q
);

 always @(clk or d)
 begin

 if (clk)
 q <= d;
 end

endmodule

Clk

D Q

Clk

D Q

 16

EE141

Note: The following is incorrect syntax: always @(clear or negedge clock)
If one signal in the sensitivity list uses posedge/negedge, then all signals must.  

▪ Assign any signal or variable from only one always block.  
Be wary of race conditions: always blocks with same trigger
execute concurrently…

Importance of the Sensitivity List
❑ The use of posedge and negedge makes an always block

sequential (edge-triggered)

module dff_sync_clear(
 input d, clearb, clock,
 output reg q);

 always @(posedge clock)
 begin
 if (!clearb) q <= 1'b0;
 else q <= d;
 end
endmodule

D-Register with synchronous clear D-Register with asynchronous clear

always block entered only at
each positive clock edge

always block entered immediately when
(active-low) clearb is asserted

module dff_async_clear(
 input d, clearb, clock,
 output reg q);

 always @(negedge clearb or posedge clock)
 begin
 if (!clearb) q <= 1'b0;
 else q <= d;
 end
endmodule

 17

EE141

Blocking vs. Nonblocking Assignments
❑ Verilog supports two types of assignments within always blocks, with

subtly different behaviors.

always @(*) begin
 x = a | b; // 1. evaluate a|b, assign result to x
 y = a ^ b ^ c; // 2. evaluate a^b^c, assign result to y
 z = b & ~c; // 3. evaluate b&(~c), assign result to z
end

Sometimes, as above, both produce the same result. Sometimes, not!

always @(*) begin
 x <= a | b; // 1. evaluate a|b, but defer assignment to x
 y <= a ^ b ^ c; // 2. evaluate a^b^c, but defer assignment to y
 z <= b & ~c; // 3. evaluate b&(~c), but defer assignment to z
 // 4. end of time step: assign new values to x, y and z
end

❑ Blocking assignment (=): evaluation and assignment are immediate

❑ Nonblocking assignment (<=): all assignments deferred to end of
simulation time step after all right-hand sides have been evaluated
(even those in other active always blocks)

 18

EE141

Assignment Styles for Sequential Logic

Will nonblocking and blocking assignments both produce
the desired result?

module nonblocking(
 input in, clk,
 output reg out
);
 reg q1, q2;
 always @(posedge clk) begin
 q1 <= in;
 q2 <= q1;
 out <= q2;
 end

endmodule

What we want: 
Register Based Digital Delay
Line (a.k.a. shift-register)

module blocking(
 input in, clk,
 output reg out
);
 reg q1, q2;
 always @(posedge clk) begin
 q1 = in;
 q2 = q1;
 out = q2;
 end

endmodule

 19

EE141

Use Nonblocking for Sequential Logic

“At each rising clock edge, q1, q2,
and out simultaneously receive the
old values of in, q1, and q2.”

“At each rising clock edge, q1 = in.  
After that, q2 = q1.  
After that, out = q2.  
Therefore out = in.”

always @(posedge clk) begin
 q1 <= in;
 q2 <= q1; // uses old q1
 out <= q2; // uses old q2
 end

always @(posedge clk) begin
 q1 = in;
 q2 = q1; // uses new q1
 out = q2; // uses new q2
 end

❑ Blocking assignments do not reflect the intrinsic behavior of
multi-stage sequential logic 

❑ Guideline: use nonblocking assignments for sequential always
blocks

(“old” means value before clock edge, “new” means the value after most recent
assignment)

 20

EE141

Example: A Simple Counter

0 1

0
1

0

+1

enb
clr clk

// 4-bit counter with enable and synchronous clear
module counter(input clk,enb,clr,
 output reg [3:0] count);
 always @(posedge clk) begin
 count <= clr ? 4’b0 : (enb ? count+1 : count);
 end
endmodule

count
44

EE141

module ParToSer(ld, X, out, clk);

 input [3:0] X;

 input ld, clk;

 output out;

 reg [3:0] Q;

 wire [3:0] NS;

 assign NS =

(ld) ? X : {Q[0], Q[3:1]};

 always @ (posedge clk)

 Q <= NS;

 assign out = Q[0];

endmodule 22

Example - Parallel to Serial Converter

Specifies the
muxing with
“rotation”

forces Q register (flip-flops) to be
rewritten every cycle

connect output

ld

out
out

EE141

Verilog in EECS 151/251A
❑ We use behavioral modeling at the bottom of the hierarchy
❑ Use instantiation to 1) build hierarchy and, 2) map to FPGA

and ASIC resources not supported by synthesis.
❑ Favor continuous assign and avoid always blocks unless:

▪ no other alternative: ex: state elements, case
▪ helps readability and clarity of code: ex: large nested if else

❑ Use named ports.
❑ Verilog is a big language. This is only an introduction.

▪ Complete IEEE Verilog-Standard document (1364-2005) linked to class
website.

▪ Harris & Harris book chapter 4 is a good source.
▪ Be careful of what you read on the web. Many bad examples out there.
▪ We will be introducing more useful constructs throughout the semester. Stay

tuned!

 23

EE141

Final thoughts on Verilog Examples
Verilog looks like C, but it describes hardware:
Entirely different semantics: multiple physical elements with parallel activities
and temporal relationships.

A large part of digital design is knowing how to write Verilog that
gets you the desired circuit. First understand the circuit you want
then figure out how to code it in Verilog. If you try to write Verilog
without a clear idea of the desired circuit, you will struggle.

As you get more practice, you will know how to best write Verilog
for a desired result.

Be suspicious of the synthesis tools! Check the output of the tools
to make sure you get what you want.

 24

