

EECS151/251A Spring 2019 Digital Design and Integrated Circuits

Instructors:
John Wawrzynek

Lecture 23:

Constant Coefficient Multipliers, Counters, LFSRs, Shifters

Outline

- Constant Coefficient Multiplication
- Shifters
- Counters
- LFSRs

Constant Multiplication

- Our multiplier circuits so far has assumed both the multiplicand (A) and the multiplier (B) can vary at runtime.
- What if one of the two is a constant?

$$
Y=C \text { * } X
$$

- "Constant Coefficient" multiplication comes up often in signal processing and other hardware. Ex:

$$
y_{i}=\alpha y_{i-1}+x_{i}
$$

where α is an application dependent constant that is hard-wired into the circuit.

- How do we build and array style (combinational) multiplier that takes advantage of the constancy of one of the operands?

Multiplication by a Constant

- If the constant C in $\mathrm{C}^{*} \mathrm{X}$ is a power of 2 , then the multiplication is simply a shift of X .
- Ex: $4^{*} X$

- What about division?
- What about multiplication by non- powers of 2?

Multiplication by a Constant

- In general, a combination of fixed shifts and addition:
- Ex: $6^{*} X=0110{ }^{*} X=\left(2^{2}+2^{1}\right)^{*} X=2^{2} X+2^{1} X$

- Details:

Multiplication by a Constant

- Another example: C $=23_{10}=010111$

- In general, the number of additions equals one less than the number of 1's in the constant.
- Using carry-save adders (for all but one of these) helps reduce the delay and cost, and using balanced trees helps with delay, but the number of adders is still the number of 1 's in C minus 2.
- Is there a way to further reduce the number of adders (and thus the cost and delay)?

Multiplication using Subtraction

- Subtraction is approximately the same cost and delay as addition.
- Consider C*X where C is the constant value $15_{10}=01111$. $C^{*} X$ requires 3 additions.
- We can "recode" 15

$$
\begin{aligned}
& \text { from } 01111=\left(2^{3}+2^{2}+2^{1}+2^{0}\right) \\
& \text { to } 1000 \overline{1}=\left(2^{4}-2^{0}\right)
\end{aligned}
$$

where $\overline{1}$ means negative weight.

- Therefore, $15^{*} \mathrm{X}$ can be implemented with only one subtractor.

Canonic Signed Digit Representation

- CSD represents numbers using $1, \overline{1}, \& 0$ with the least possible number of non-zero digits.
- Strings of 2 or more non-zero digits are replaced.
- Leads to a unique representation.
- To form CSD representation might take 2 passes:
- First pass: replace all occurrences of 2 or more 1 's:

$$
01 . .10 \text { by } 10 . . \overline{10}
$$

- Second pass: same as above, plus replace $01 \overline{1} 0$ by 0010 and $0 \overline{110}$ by $00 \overline{10}$
- Examples:

$$
011101=29
$$

$$
100101=32-4+1
$$

$$
\begin{array}{ll}
0010111=23 & 0110110=54 \\
001100 \overline{1}=3 \\
010 \overline{1} 00 \overline{1}=32-8-1 & 10 \overline{110 \overline{1} 0} \\
100 \overline{10} 0=64-8-2
\end{array}
$$

- Can we further simplify the multiplier circuits?

"Constant Coefficient Multiplication" (KCM)

Binary multiplier: $Y=231^{*} X=\left(2^{7}+2^{6}+2^{5}+2^{2}+2^{11+2^{0}}\right)^{*} X$

- CSD helps, but the multipliers are limited to shifts followed by adds.
- CSD multiplier: $\mathrm{Y}=231^{*} \mathrm{X}=\left(2^{8}-2^{5}+2^{3}-2^{0}\right)^{*} \mathrm{X}$

- How about shift/add/shift/add ...?
- KCM multiplier: $\mathrm{Y}=231^{*} \mathrm{X}=7^{*} 33^{*} \mathrm{X}=\left(2^{3}-2^{0}\right)^{*}\left(2^{5}+2^{0}\right)^{*} \mathrm{X}$

- No simple algorithm exists to determine the optimal KCM representation.
- Most use exhaustive search method.

Fixed Shifters / Rotators Defined

Rotate

Variable Shifters / Rotators

- Example: X >> S, where S is unknown when we synthesize the circuit.
- Uses: shift instruction in processors (ARM includes a shift on every instruction), floating-point arithmetic, division/multiplication by powers of 2, etc.
- One way to build this is a simple shift-register:
a) Load word, b) shift enable for S cycles, c) read word.

- Worst case delay $\mathrm{O}(\mathrm{N})$, not good for processor design.
- Can we do it in $\mathrm{O}(\log \mathrm{N})$ time and fit it in one cycle?

Log Shifter / Rotator

- $\log (\mathrm{N})$ stages, each shifts (or not) by a power of 2 places, $\mathrm{S}=\left[\mathrm{s}_{2} ; \mathrm{s}_{1} ; \mathrm{S}_{0}\right]$:

LUT Mapping of Log shifter

Efficient with 2 to1 multiplexors, for instance, 3LUTs.
Virtex6 has 6LUTs. Naturally makes 4to1 muxes:
Reorganize shifter to use 4to1 muxes.

"Improved" Shifter / Rotator

- How about this approach? Could it lead to even less delay?

- What is the delay of these big muxes?
- Look a transistor-level implementation?

Barrel Shifter

Cost/delay?

- (don't forget the decoder)

Connection Matrix

Generally useful structure:

- ${ }^{2}$ control points.
- What other interesting functions can it do?

Cross-bar Switch

Nlog(N) control signals.
Supports all interesting permutations

- All one-to-one and one-to-many connections.
Commonly used in communication hardware (switches, routers).

Counters

Counters

- Special sequential circuits (FSMs) that repeatedly sequence through a set of outputs.
- Examples:
- binary counter: 000, 001, 010, 011, 100, 101, 110, 111, 000,
- gray code counter:

000, 010, 110, 100, 101, 111, 011, 001, 000, 010, 110, ...

- one-hot counter: 0001, 0010, 0100, 1000, 0001, 0010, ...
- BCD counter: 0000, 0001, 0010, ..., 1001, 0000, 0001
- pseudo-random sequence generators: 10, 01, 00, 11, 10, 01, 00, ...
- Moore machines with "ring" structure in State Transition Diagram:

What are they used?

- Counters are commonly used in hardware designs because most (if not all) computations that we put into hardware include iteration (looping). Examples:
- Shift-and-add multiplication scheme.
- Bit serial communication circuits (must count one "words worth" of serial bits.
- Other uses for counter:
- Clock divider circuits

- Systematic inspection of data-structures
- Example: Network packet parser/filter control.
- Counters simplify "controller" design by:
- providing a specific number of cycles of action,
- sometimes used with a decoder to generate a sequence of timed control signals.
- Consider using a counter when FSM has many states with few branches.

Controller using Counters

- Example, Bit-serial multiplier (n^{2} cycles, one bit of result per n cycles):

- Control Algorithm:

```
repeat n cycles { // outer (i) loop
    repeat n cycles{ // inner (j) loop
        shiftA, selectSum, shiftHI
        }
        shiftB, shiftHI, shiftLOW, reset
}
```

Note: The occurrence of a control signal x means $x=1$. The absence of x means $x=0$.

Controller using Counters

- State Transition Diagram:
- Assume presence of two binary counters. An "i" counter for the outer loop and "j" counter for inner loop.

Controller using Counters

- Controller circuit implementation:

How do we design counters?

- For binary counters (most common case) incrementer circuit would work:

- In Verilog, a counter is specified as: $x=x+1$;
- This does not imply an adder
- An incrementer is simpler than an adder
- In general, the best way to understand counter design is to think of them as FSMs, and follow general procedure, however some special cases can be optimized.

Synchronous Counters
All outputs change with clock edge.

- Binary Counter Design: Start with 3-bit version and generalize:

c	b	a	c^{+}	$b^{+} a^{+}$		
0	0	0	0	0	1	$a^{+}=a^{\prime}$
0	0	1	0	1	0	$b^{+}=a \oplus b$
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	c^{+}
1	0	1	1	1	0	$=a b c^{\prime}+a^{\prime} b^{\prime} c+a b^{\prime} c+a^{\prime} b c$
1	1	0	1	1	1	
1	1	1	0	0	0	
1			$=c\left(a++b^{\prime}\right)+c^{\prime}+b^{\prime} c$			
	$=c(a b)^{\prime}+c^{\prime}(a b)$					

Synchronous Counters

- How do we extend to n-bits?
- Extrapolate $\mathrm{c}^{+}: \mathrm{d}^{+}=\mathrm{d} \oplus \mathrm{abc}, \mathrm{e}^{+}=\mathrm{e} \oplus \mathrm{abc}$

- Has difficulty scaling (AND gate inputs grow with n)

- CE is "count enable", allows external control of counting,
- TC is "terminal count", is asserted on highest value, allows cascading, external sensing of occurrence of max value.

Synchronous Counters

- How does this one scale?
© Delay grows a n

Alternative Parallel Prefix Circuit

Odd Counts

- Extra combinational logic can be added to terminate count before max value is reached:
- Example: count to 12

- Alternative loadable counter:

Ring Counters

- "one-hot" counters 0001, 0010, 0100, 1000, 0001, ...

"Self-starting" version:

"Ripple" counters

Fig. 6-8 4-Bit Binary Ripple Counter

Linear Feedback Shift Registers (LFSRs)

- These are n-bit counters exhibiting pseudo-random behavior.
- Built from simple shift-registers with a small number of xor gates.
- Used for:
- random number generation
- counters
- error checking and correction
- Advantages:
- very little hardware
- high speed operation
- Example 4-bit LFSR:

4-bit LFSR

- Circuit counts through 24-1 different non-zero bit patterns.
- Leftmost bit decides whether the "10011" xor pattern is used to compute the next value or if the register just shifts left.
- Can build a similar circuit with any number of FFs, may need more xor gates.
- In general, with n flip-flops, 2^{n-1} different non-zero bit patterns.
- (Intuitively, this is a counter that wraps around many times and in a strange way.)

xor 00000001100

| 0 | 1 | 0 | 011 |
| :--- | :--- | :--- | :--- | :--- | :--- |

xor 0000000101

$\begin{array}{lllllll} \\ \text { xor } & 0 & 0 & 0 & 0 & 0 & 1110 \\ 0 & 0 & 1111\end{array}$

Q4 Q3 Q2 Q1

xor	1	0	0	1	1
0	0	1	0	1	1

Applications of LFSRs

- Performance:
- In general, xors are only ever 2-input and never connect in series.
- Therefore the minimum clock period for these circuits is:
$\mathrm{T}>\mathrm{T}_{\text {2-input-xor }}+$ clock overhead
- Very little latency, and independent of n !
- This can be used as a fast counter, if the particular sequence of count values is not important.
- Example: micro-code micro-pc
- Can be used as a random number generator.
- Sequence is a pseudo-random sequence:
- numbers appear in a random sequence
- repeats every $2^{2 n}-1$ patterns
- Random numbers useful in:
- computer graphics
- cryptography
- automatic testing
- Used for error detection and correction
- CRC (cyclic redundancy codes)
- Ethernet uses them

Galois Fields - the theory behind LFSRs

- LFSR circuits performs multiplication on a field.
- A field is defined as a set with the following:
- two operations defined on it:
- "addition" and "multiplication"
- closed under these operations
- associative and distributive laws hold
- additive and multiplicative identity elements
- additive inverse for every element
- multiplicative inverse for every non-zero element
- Example fields:
- set of rational numbers
- set of real numbers
- set of integers is not a field (why?)
- Finite fields are called Galois fields.
- Example:
- Binary numbers 0,1 with XOR as "addition" and AND as "multiplication".
- Called GF(2).

Galois Fields - The theory behind LFSRs

- Consider polynomials whose coefficients come from GF(2).
- Each term of the form x^{n} is either present or absent.
- Examples: $0,1, x, x^{2}$, and $x^{7}+x^{6}+1$

$$
=1 \cdot x^{7}+1 \cdot x^{6}+0 \cdot x^{5}+0 \cdot x^{4}+0 \cdot x^{3}+0 \cdot x^{2}+0 \cdot x^{1}+1 \cdot x^{0}
$$

- With addition and multiplication these form a field:
- "Add": XOR each element individually with no carry:

$$
\begin{array}{r}
\quad x^{4}+x^{3}+\quad+x+1 \\
+\quad x^{4}++x^{2}+x \\
\hline x^{3}+x^{2}+1
\end{array}
$$

- "Multiply": multiplying by x^{n} is like shifting to the left.

$$
\begin{array}{r}
\\
\begin{array}{r}
x^{2}+x+1 \\
\cdot \\
\hline x^{2}+x+1 \\
\frac{x^{3}+x^{2}+x}{x^{3}}+1
\end{array}
\end{array}
$$

Galois Fields - The theory behind LFSRs

- These polynomials form a Galois (finite) field if we take the results of this multiplication modulo a prime polynomial $p(x)$.
- A prime polynomial is one that cannot be written as the product of two non-trivial polynomials $q(x) r(x)$
- Perform modulo operation by subtracting a (polynomial) multiple of $p(x)$ from the result. If the multiple is 1 , this corresponds to XOR-ing the result with $p(x)$.
- For any degree, there exists at least one prime polynomial.
- With it we can form $G F\left(2^{n}\right)$
- Additionally, ...
- Every Galois field has a primitive element, α, such that all non-zero elements of the field can be expressed as a power of α. By raising α to powers (modulo $p(x)$), all non-zero field elements can be formed.
- Certain choices of $p(x)$ make the simple polynomial x the primitive element. These polynomials are called primitive, and one exists for every degree.
- For example, $x^{4}+x+1$ is primitive. So $\alpha=x$ is a primitive element and successive powers of α will generate all non-zero elements of GF(16). Example on next slide.

Galois Fields - The theory behind LFSRs

$$
\begin{aligned}
& \alpha^{0}=\quad 1 \\
& \alpha^{l}=\quad x \\
& \alpha^{2}=x^{2} \\
& \alpha^{3}=x^{3} \\
& \alpha^{4}=\quad x+1 \\
& \alpha^{5}=\quad x^{2}+x \\
& \alpha^{6}=x^{3}+x^{2} \\
& \alpha^{7}=x^{3} \quad+x+1 \\
& \alpha^{8}=x^{2}+1 \\
& \alpha^{9}=x^{3} \quad+x \\
& \alpha^{10}=\quad x^{2}+x+1 \\
& \alpha^{11}=x^{3}+x^{2}+x \\
& \alpha^{12}=x^{3}+x^{2}+x+1 \\
& \alpha^{13}=x^{3}+x^{2}+1 \\
& \alpha^{14}=x^{3} \quad+1 \\
& \alpha^{15}=\quad 1
\end{aligned}
$$

- Note this pattern of coefficients matches the bits from our 4-bit LFSR example.

$$
\begin{aligned}
\alpha^{4} & =x^{4} \bmod x^{4}+x+1 \\
& =x^{4} \operatorname{xor} x^{4}+x+1 \\
& =x+1
\end{aligned}
$$

- In general finding primitive polynomials is difficult. Most people just look them up in a table, such as:

Primitive Polynomials

```
x 2}+x+
\mp@subsup{x}{}{3}+x+1
x4}+x+
x5+\mp@subsup{x}{}{2}+1
x}+x+
x}+\mp@subsup{x}{}{3}+
x}+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+
x9+ x4+1
x10}+\mp@subsup{x}{}{3}+
xl1 + x 2 +1
```

$x^{12}+x^{6}+x^{4}+x+1$

$$
x^{13}+x^{4}+x^{3}+x+1
$$

$$
\begin{aligned}
& x^{22}+x+1 \\
& x^{23}+x^{5}+1
\end{aligned}
$$

$$
x^{14}+x^{10}+x^{6}+x+1
$$

$$
x^{24}+x^{7}+x^{2}+x+1
$$

$$
x^{15}+x+1
$$

$$
x^{25}+x^{3}+1
$$

$$
x^{16}+x^{12}+x^{3}+x+1
$$

$$
x^{26}+x^{6}+x^{2}+x+1
$$

$$
x^{17}+x^{3}+1
$$

$$
x^{27}+x^{5}+x^{2}+x+1
$$

$$
x^{18}+x^{7}+1
$$

$$
x^{28}+x^{3}+1
$$

$$
x^{19}+x^{5}+x^{2}+x+1
$$

$$
x^{29}+x+1
$$

$$
x^{20}+x^{3}+1
$$

$$
x^{30}+x^{6}+x^{4}+x+1
$$

$$
x^{21}+x^{2}+1
$$

$$
x^{31}+x^{3}+1
$$

$$
x^{32}+x^{7}+x^{6}+x^{2}+1
$$

Galois Field
Multiplication by x elements by evaluating x^{k} for $k=1, \ldots, 2^{n-1}$

Taking the result mod $p(x) \Leftrightarrow$ XOR-ing with the coefficients of $p(x)$ when the most significant coefficient is 1 . Obtaining all 2^{n-1} non-zero \Leftrightarrow Shifting and XOR-ing 2n-1 times.

Hardware
\Leftrightarrow shift left

Building an LFSR from a Primitive Polynomial

- For k-bit LFSR number the flip-flops with FF1 on the right.
- Find the primitive polynomial of the form $x^{k}+\ldots+1$.
- The feedback path comes from the Q output of the leftmost FF, corresponding to the x^{k} term.
- The $x^{0}=1$ term corresponds to connecting the feedback directly to the D input of FF 1.
- Each term of the form x^{n} corresponds to connecting an xor between FF n and $n+1$.
- 4-bit example, uses $x^{4}+x+1$
- $x^{4} \Leftrightarrow$ FF4's Q output
- $x \Leftrightarrow$ xor between FF1 and FF2
- $l \Leftrightarrow$ FF1's D input
- To build an 8-bit LFSR, use the primitive polynomial $x^{8}+x^{4}+x^{3}+x^{2}+1$ and connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

