
DNN
Accelerators

and
HLS

Qijing (Jenny) Huang

1. Deep Neural Network (DNN)
2. Design Methodology
3. Accelerator Architecture
4. High-level Synthesis (HLS)

Outline

Learning from the Brain

● The basic computational unit of the brain is a neuron
○ 86B neurons in the brain

● Neurons are connected with nearly 1014 – 1015 synapses
● Neurons receive input signal from dendrites and produce output signal along

axon, which interact with the dendrites of other neurons via synaptic weights
● Synaptic weights – learnable & control influence strength

Integrate and Fire

* Slide from http://cs231n.github.io/

http://cs231n.github.io/

Neural Networks

● NNs are usually feed forward computational graphs constructed from one or
more layers

● The “Neuron” computes:
○ Integrate - typically linear transform (dot-product of receptive field)
○ Fire - followed by a non-linear “activation” function

* Slide from http://cs231n.github.io/

http://cs231n.github.io/

Training vs. Inference
Training

Process for a machine to learn by
optimizing models (weights) from
labeled data.

* Slide from https://www.hotchips.org/archives/2010s/hc30/

Inference

Using trained models to predict or
estimate outcomes from new inputs.

Typically computed in the cloud

Deployment at the edge

https://www.hotchips.org/archives/2010s/hc30/

Many AI Chips
In the Cloud
(Training + Inference)

● 10s TFLOPs
● 10s MB on-chip memory
● 8 - 32 bit precision
● 700 MHz - 1 GHz
● 10-100s Watts

Cloud TPU v3 (45 TFLOP/s)

At the Edge
(Inference)

● 100s-1000s GFLOPs
● 100s KB on-chip memory
● 1 - 16 bit precision
● 50 MHz - 400 MHz
● 1-10s Watts

In the Edge SoC/SiP
(Inference)

● 10s-1000s GFLOPs
● 100s KB on-chip memory
● 1 - 16 bit precision
● 600 MHz - 1 GHz
● 10-100s mWatts

Intel Movidius (4 TFLOP/s) Cambricon-1M IP

~ 85 AI chip companies worldwide

* Data adapted from Prof. Kurt Keutzer’s talk at DAC 2018

* Image from https://www.electronicproducts.com/Digital_ICs/Designer_s_Guide_Selecting_AI_chips_for_embedded_designs.aspx

Computer Vision Applications

Autonomous Vehicles Security Camera Drones

Medical Imaging Robots Mobile Applications

Computer Vision Tasks

Image Classification Semantic SegmentationObject Detection

Super Resolution

Sedan: 0.90
Motorcycle: 0.02
Truck: 0.05
Toy: 0.03
...

Activity Recognition

Draw Sword: 0.60
Stand: 0.02
Fence: 0.35
Throw: 0.03
...

Deep Neural Network

Common Operations
● Convolution (Dilated, Transposed, 3D and etc.)
● ReLU
● Pooling (Average, Max)
● Fully-Connected
● Batch Normalization

Activation/Feature Maps
● Input images have three dimensions with RGB channels
● Intermediate data have more channels after performing convolution
● We refer to them as feature maps

Channel Dimension

One Feature Map :

height

width

Input Image:

Weights/Kernels
● weights for full convolution typically have four dimensions:

○ input channels, width, height, output channels

● input channel size matches the channel dimension of input features
● output channel size specifies the channel dimension of output features

Input Channels (IC)

Input Image: Weights:

Output
Channels
(OC)

Output Channels
(OC)

Output Image:

3x3 Convolution - Spatially

● 3x3 Conv with No Stride, No Padding

● Weights = [[0, 1, 2], [2,2,0], [0,1,2]]

● 3x3 Conv with Stride 2, Padding 1

● Weights = [[2, 0, 1], [1,0,0], [0,1,1]]

* gif from http://deeplearning.net/software/theano_versions/dev/_images/

Output feature map

Input feature map

Input feature map

Output feature map

O
00

 = I
00

 x W
00

 + I
01

 x W
01

 + I
02

 xW
02

 + I
10

 x W
10

 + I
11

 x W
11

 + I
12

 xW
12

 + I
20

 x W
20

 + I
21

 x W
21

 + I
22

xW
22

http://deeplearning.net/software/theano_versions/dev/_images/

3x3 Convolution - 3D

* gif from https://cdn-images-1.medium.com/max/800/1*q95f1mqXAVsj_VMHaOm6Sw.gif

Input
Channels

Output
Channels

https://cdn-images-1.medium.com/max/800/1*q95f1mqXAVsj_VMHaOm6Sw.gif

3x3 Convolution - 3D
http://cs231n.github.io/assets/conv-demo/index.html

* gif from https://cdn-images-1.medium.com/max/800/1*q95f1mqXAVsj_VMHaOm6Sw.gif

http://cs231n.github.io/assets/conv-demo/index.html
https://cdn-images-1.medium.com/max/800/1*q95f1mqXAVsj_VMHaOm6Sw.gif

Fully-Connected Layer (FC)
● Each input activation is connected to every

output activation
● Essentially a matrix-vector multiplication

Input Activations:
IC x 1

Weights:
OC x IC

OC

IC

IC

 1

=

 1

OC

Output Activations:
OC x 1

ReLU Activation Function
● Implements the concept of

“Firing”
● Introduces non-linearity
● Rectified Linear Unit

○ R(z) = max(0, z)

● Not differentiable at 0

Batch Normalization (BN)
● Shifts and scales activations

to achieve zero-centered
distribution with unit
variance

○ Subtracts mean

○ Divides by standard deviation

* images from https://en.wikipedia.org/wiki/Normal_distribution

https://en.wikipedia.org/wiki/Normal_distribution

Pooling
● Downsamples

○ Takes the maximum

○ Takes the average

● Operates at each feature map independently

* images from http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Full DNN Example: AlexNet

Top-1 Accuracy 57.1%

Top-5 Accuracy 80.2%

Model Size 61M

MACs 725M

Full DNN Example: ResNet-34

Top-1 Accuracy 73.3%

Top-5 Accuracy 91.3%

Model Size 83M

MACs 2G

Design Methodology

The Roofline Model

● Performance is upper bounded by the peak performance, the communication
bandwidth, and the operational intensity

● Arithmetic Intensity is the ratio of the compute to the memory traffic

Image from https://en.wikipedia.org/wiki/Roofline_model

● π - the peak compute performance
● β - the peak bandwidth
● I - the arithmetic intensity

● The attainable throughput P:

https://en.wikipedia.org/wiki/Roofline_model

The Roofline Model

Figure from https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf

https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf

Conv2D to Matrix-Matrix Multiplication
● Im2Col stores in each column the necessary pixels for each kernel map

○ Duplicates input feature maps in memory

○ Restores output feature map structure

* Image from http://nmhkahn.github.io/CNN-Practice

http://nmhkahn.github.io/CNN-Practice

Im2col Transform

* from https://www.researchgate.net/publication/327070011_Accelerating_Deep_Neural_Networks_on_Low_Power_Heterogeneous_Architectures

https://www.researchgate.net/publication/327070011_Accelerating_Deep_Neural_Networks_on_Low_Power_Heterogeneous_Architectures

* Image from https://github.com/numforge/laser/wiki/Convolution-optimisation-resources

https://github.com/numforge/laser/wiki/Convolution-optimisation-resources

Conv2D to Matrix-Vector Multiplication
● For each pixel, we can first perform Matrix-Vector Multiplication along the

input channel dimension
● Then we can use adder-tree to aggregate the sum of K x K pixels (K is the kernel

size)

Input
Activations:

Weights:

OC

IC

IC

 1

=
 1

OC

Partial Sums

Input Channels (IC)

Input Image: Weights:

Output
Channels
(OC)

1

1

1

1

1

1

1

1

1

1

Input Channels (IC)

Output Channels (OC)

Output Image:

=

Accelerator Architecture

General
Architecture

Systolic Array
● Systolic Array is a homogeneous network of tightly coupled data processing

units (DPUs).
● Each DPU independently computes a partial result as a function of the data

received from its upstream neighbors, stores the result within itself and passes
it downstream.

● Advantages of systolic array design:
○ Shorter wires -> lower propagation delay and lower power consumption

○ High degree of pipelining -> faster clock

○ High degree of parallelism -> high throughput

○ Simple control logic -> less design efforts

MAX_SIZE

M
A

X
_S

IZE

System Architecture

MAC design

C[i][j] = C[i][j] + A[i][k] * B[k][j]

i

j

B[k][0] B[k][1] B[k][2]

C
[0][0]

k

k
A[0][k]

A[1][k]

A[2][k]

C
[0][1]

C
[0][2]

C
[1][0]

C
[1][1]

C
[1][2]

C
[2][0]

C
[2][1]

C
[1][2]

* Images from http://www.telesens.co/2018/07/30/systolic-architectures/

http://www.telesens.co/2018/07/30/systolic-architectures/

Specialized
Architecture

Layer-based Design

Controllers:

Stream Buffer

Systolic Array for Convolution / Fully Connected Layer

BN

PE 1 PE 2 PE 3 PE 4 PE
N-1 PE N...

 ReLUPooling

DDR

Input Weights Output Output Output

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

1

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

2

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

3

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

4

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

5

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

6

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

7

Execution Model

Conv ReLu BN MaxPool FC

AlexNet Design

8

Spatial Design

BRAMs:

DDR

weights
& bias

Conv
3x3

BN

ReLU
Inputs

weights
& bias

BN

ReLU

Pool

weights
& bias

...

Layer1 Layer2 LayerN

Conv
1x1 FC

Line-Buffer Design

● Buffers inputs to perform spatial operations

● Buffers inputs for reuse to improve the arithmetic intensity

* Ritchie Zhao, et al. Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '17)

Execution Model
● 2x2 Max Pooling

Execution Model
● 2x2 Max Pooling

Execution Model
● 2x2 Max Pooling

● 2x2 Max Pooling

Execution Model

Execution Model
● 2x2 Max Pooling

Mixed-precision
Processing
Elements

Mixed-Precision Processing Element (PE)

* Images from https://iscaconf.org/isca2018/slides/9A2.pdf

https://iscaconf.org/isca2018/slides/9A2.pdf

Spatial PE: 2-bit mode

* Images from https://iscaconf.org/isca2018/slides/9A2.pdf 16x Parallelism

https://iscaconf.org/isca2018/slides/9A2.pdf

Spatial PE: 4-bit mode

* Images from https://iscaconf.org/isca2018/slides/9A2.pdf
4x Parallelism

https://iscaconf.org/isca2018/slides/9A2.pdf

Spatial Processing Element: 4-8 bit mode

* Images from https://iscaconf.org/isca2018/slides/9A2.pdf
2x Parallelism

https://iscaconf.org/isca2018/slides/9A2.pdf

Mixed-precision PE: Temporal vs. Spatial

Bit-Serial: Combines results over time Bit-Parallel: Combines results over space

● Spatial design is normally more efficient in terms of area and power, given the
same throughput

* Images from https://iscaconf.org/isca2018/slides/9A2.pdf

https://iscaconf.org/isca2018/slides/9A2.pdf

High-level Synthesis

High-Level Synthesis
● Allows users to specify algorithm logic in high-level languages

○ No concept of clock

○ Not specifying register-transfer level activities

● HLS compiler generates RTL based on high-level algorithmic description
○ Allocation

○ Scheduling

○ Binding

● Advantages:
○ Faster development and debugging cycles

○ More structural code

○ Focuses on larger architecture design tradeoffs

HLS Abstraction
● High-level Languages

○ C/C++, OpenCL, GoLang

● Typical hardware mapping
○ C Function -> Verilog Module

○ Function Arguments -> Memory Ports

○ Basic Blocks (blocks without branches) -> Hardware Logic

○ Operators -> Functional Units

○ Arrays -> BRAMs

○ Control Flow Graph (CFG) -> Finite-state Machine (FSM)

● Limitations:
○ No dynamic memory allocation allowed

○ No recursion support

Example: Matrix Multiplication
Step 1: Partition Local Arrays

Step 2: Design
Systolic Array
(Implicit)

Step 2: Design
Systolic Array
(Explicit)

Step 3: Schedule
Outer Loop
Control Logic and
Memory
Accesses

* Please see the SDAccel page for detailed source code

https://github.com/Xilinx/SDAccel_Examples/blob/1e273f6ef01073f878a4c2b5ca4d6ad5aec7e616/getting_started/kernel_opt/systolic_array_c/src/mmult.cpp

Resources
● Vivado HLS Design Hubs

● Parallel Programming for FPGAs

● Cornell ECE 5775: High-Level Digital Design Automation

● LegUp: Open-source HLS Compiler

● VTA design example

● Vivado SDAccel design examples

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://arxiv.org/pdf/1805.03648.pdf
https://www.csl.cornell.edu/courses/ece5775/schedule.html
http://legup.eecg.utoronto.ca/docs/4.0/index.html
https://github.com/dmlc/tvm/blob/master/vta/hardware/xilinx/src/vta.cc
https://github.com/Xilinx/SDAccel_Examples

Questions?

