DNN Accelerators and HLS

Qijing (Jenny) Huang

Outline

Deep Neural Network (DNN)
 Design Methodology
 Accelerator Architecture
 High-level Synthesis (HLS)

Learning from the Brain

- The basic computational unit of the brain is **a neuron**
 - 86B neurons in the brain
- Neurons are connected with nearly **10**¹⁴ **10**¹⁵ synapses
- Neurons receive input signal from **dendrites** and produce output signal along **axon**, which interact with the dendrites of other neurons via **synaptic weights**
- Synaptic weights learnable & control influence strength

* Slide from http://cs231n.github.io/

Neural Networks

- NNs are usually feed forward computational graphs constructed from one or more layers
- The "Neuron" computes:
 - Integrate typically linear transform (dot-product of receptive field)
 - Fire followed by a non-linear "activation" function

* Slide from http://cs231n.github.io/

Training vs. Inference

Training

Process for a machine to learn by optimizing models (weights) from labeled data.

Typically computed in the cloud

Inference

Using trained models to predict or estimate outcomes from new inputs.

Deployment at the edge

In the Cloud (Training + Inference)

- 10s TFLOPs
- 10s MB on-chip memory
- 8 32 bit precision
- 700 MHz 1 GHz
- 10-100s Watts

Cloud TPU v3 (45 TFLOP/s)

Many AI Chips ~ 85 AI chip companies worldwide

At the Edge (Inference)

- 100s-1000s GFLOPs
- 100s KB on-chip memory
- 1 16 bit precision
- 50 MHz 400 MHz
- 1-10s Watts

Intel Movidius (4 TFLOP/s)

In the Edge SoC/SiP (Inference)

- 10s-1000s GFLOPs
- 100s KB on-chip memory
- 1 16 bit precision
- 600 MHz 1 GHz
- 10-100s mWatts

Cambricon-1M IP

* Data adapted from Prof. Kurt Keutzer's talk at DAC 2018

* Image from https://www.electronicproducts.com/Digital_ICs/Designer_s_Guide_Selecting_AI_chips_for_embedded_designs.aspx

Computer Vision Applications

Autonomous Vehicles

Security Camera

Drones

Medical Imaging

Robots

Mobile Applications

Computer Vision Tasks

Image Classification

Object Detection

Semantic Segmentation

Super Resolution

Activity Recognition

Deep Neural Network

Common Operations

- Convolution (Dilated, Transposed, 3D and etc.)
- ReLU
- Pooling (Average, Max)
- Fully-Connected
- Batch Normalization

Activation/Feature Maps

- Input images have three dimensions with RGB channels
- Intermediate data have more channels after performing convolution
- We refer to them as feature maps

Weights/Kernels

- weights for full convolution typically have four dimensions:
 - input channels, width, height, output channels
- input channel size matches the channel dimension of input features
- output channel size specifies the channel dimension of output features

3x3 Convolution - Spatially

Output feature map

Input feature map

- 3x3 Conv with No Stride, No Padding
- Weights = [[0, 1, 2], [2,2,0], [0,1,2]]

16571097108

Output feature map

Input feature map

- 3x3 Conv with Stride 2, Padding 1
- Weights = [[2, 0, 1], [1,0,0], [0,1,1]]

 $O_{00} = I_{00} \times W_{00} + I_{01} \times W_{01} + I_{02} \times W_{02} + I_{10} \times W_{10} + I_{11} \times W_{11} + I_{12} \times W_{12} + I_{20} \times W_{20} + I_{21} \times W_{21} + I_{22}$

* gif from <u>Attp://deeplearning.net/software/theano_versions/dev/_images/</u>

3x3 Convolution - 3D

3x3 Convolution - 3D

http://cs231n.github.io/assets/conv-demo/index.html

* gif from https://cdn-images-1.medium.com/max/800/1*q95f1mqXAVsj_VMHaOm6Sw.gif

Fully-Connected Layer (FC)

- Each input activation is connected to every output activation
- Essentially a matrix-vector multiplication

ReLU Activation Function

- Implements the concept of "Firing"
- Introduces non-linearity
- Rectified Linear Unit
 - \circ R(z) = max(0, z)
- Not differentiable at 0

Batch Normalization (BN)

 Shifts and scales activations to achieve <u>zero-centered</u> <u>distribution with unit</u>

<u>variance</u>

- Subtracts mean
- Divides by standard deviation

* images from https://en.wikipedia.org/wiki/Normal_distribution

Pooling

• Downsamples

- Takes the maximum
- Takes the average
- Operates at each feature map independently

112x112x64

112

112

* images from http://cs231n.github.io/convolutional-networks/

Full DNN Example: AlexNet

Top-1 Accuracy	57.1%
Top-5 Accuracy	80.2%
Model Size	61M
MACs	725M

Design Methodology

The Roofline Model

- π the peak compute performance
- β the peak bandwidth
- I the arithmetic intensity
- The attainable throughput P:

$$P = \min \left\{ egin{smallmatrix} \pi \ eta imes I
ight.$$

- **Performance** is upper bounded by <u>the peak performance</u>, <u>the communication</u> <u>bandwidth</u>, and <u>the operational intensity</u>
- Arithmetic Intensity is the ratio of the compute to the memory traffic

The Roofline Model

Figure from https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf

Conv2D to Matrix-Matrix Multiplication

- Im2Col stores in each column the necessary pixels for each kernel map
 - Duplicates input feature maps in memory
 - Restores output feature map structure

* Image from http://nmhkahn.github.io/CNN-Practice

Im2col Transform

* from https://www.researchgate.net/publication/327070011 Accelerating Deep Neural Networks on Low Power Heterogeneous Architectures

Image to column operation (im2col) Slide the input image like a convolution but each patch become a column vector.

We get true performance gain

when the kernel has a large number of filters, ie: F=4

and/or you have a batch of images (N=4). Example for the input batch [4x4x3x4], convolved with 4 filters [2x2x3x2]. The only problem with this approach is the amount of memory

Reshaped kernel: [4x12]

Converted input batch [12x36]

* Image from https://github.com/numforge/laser/wiki/Convolution-optimisation-resources

Conv2D to Matrix-Vector Multiplication

- For each pixel, we can first perform Matrix-Vector Multiplication along the input channel dimension
- Then we can use adder-tree to aggregate the sum of K x K pixels (K is the kernel size)

Input Channels (IC)

Accelerator Architecture

General Architecture

Systolic Array

- **Systolic Array** is a homogeneous network of tightly coupled data processing units (DPUs).
- Each **DPU** independently computes a partial result as a function of the data received from its upstream neighbors, stores the result within itself and passes it downstream.
- Advantages of systolic array design:
 - Shorter wires -> lower propagation delay and lower power consumption
 - High degree of pipelining -> faster clock
 - High degree of parallelism -> high throughput
 - Simple control logic -> less design efforts

* Images from http://www.telesens.co/2018/07/30/systolic-architectures/

Specialized Architecture

Layer-based Design

AlexNet Design

AlexNet Design

AlexNet Design

Spatial Design

Line-Buffer Design

• Buffers inputs to perform spatial operations

• Buffers inputs for reuse to improve the arithmetic intensity

* Ritchie Zhao, et al. Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '17)

4	2	5	6	9		
1	3	8	7	3		
6	4	2	8	1		

4	2	5	6	9		
1	3	8	7	3		
6	4	2	8	1		
4						

4	2	5	6	9
1	3	8	7	3
6	4	2	8	1

4	2	5	6	9
1	3	8	7	3
6	4	2	8	1
	/			
4				

4	2	5	6	9			
1	3	8	7	3			
6	4	2	8	1			
4	8						

Mixed-precision Processing Elements

Mixed-Precision Processing Element (PE)

Spatial PE: 2-bit mode

16x Parallelism

Spatial PE: 4-bit mode

4x Parallelism

Spatial Processing Element: 4-8 bit mode

Partial Products

2x Parallelism

Mixed-precision PE: Temporal vs. Spatial

Bit-Serial: Combines results over time

Bit-Parallel: Combines results over space

- Spatial design is normally more efficient in terms of area and power, given the same throughput
- * Images from https://iscaconf.org/isca2018/slides/9A2.pdf

High-level Synthesis

High-Level Synthesis

- Allows users to specify algorithm logic in high-level languages
 - No concept of clock
 - Not specifying register-transfer level activities
- HLS compiler generates RTL based on high-level algorithmic description
 - Allocation
 - Scheduling
 - Binding
- Advantages:
 - Faster development and debugging cycles
 - More structural code
 - Focuses on larger architecture design tradeoffs

HLS Abstraction

- High-level Languages
 - \circ C/C++, OpenCL, GoLang
- Typical hardware mapping
 - C Function -> Verilog Module
 - Function Arguments -> Memory Ports
 - Basic Blocks (blocks without branches) -> Hardware Logic
 - Operators -> Functional Units
 - Arrays -> BRAMs
 - Control Flow Graph (CFG) -> Finite-state Machine (FSM)
- Limitations:
 - No dynamic memory allocation allowed
 - No recursion support

Example: Matrix Multiplication

Step 1: Partition Local Arrays

// Local memory to store input and output matrices
int localA[MAX_SIZE][MAX_SIZE];
#pressure ULS_APPAX_PARTITION_variable_localA_dim_1_compl

#pragma HLS ARRAY_PARTITION variable=localA dim=1 complete

int localB[MAX_SIZE][MAX_SIZE];
#pragma HLS ARRAY_PARTITION variable=localB dim=2 complete

```
int localC[MAX_SIZE][MAX_SIZE];
```

#pragma HLS ARRAY_PARTITION variable=localC dim=0 complete

Step 2: Design Systolic Array (Implicit)

```
systolic1: for(int k = 0; k < a_col; k++) {
#pragma HLS LOOP_TRIPCOUNT min=c_size max=c_size
#pragma HLS PIPELINE II=1
systolic2: for(int i = 0; i < MAX_SIZE; i++) {
    systolic3: for(int j = 0; j < MAX_SIZE; j++) {
}
</pre>
```

```
// Get previous sum
int last = (k==0) ? 0 : localC[i][j];
```

```
// Update current sum
// Handle boundary conditions
int a_val = (i < a_row && k < a_col)? localA[i][k] : 0;
int b_val = (k < b_row && j < b_col)? localB[k][j] : 0;
int result = last + a_val*b_val;</pre>
```

```
// Write back results
localC[i][j] = result;
```

}

Step 2: Design Systolic Array (Explicit)

```
for (int r = 0; r < N + 2 * MAX SIZE - 2; r++) {
#pragma HLS pipeline
                // update data (i.e., reads data from previous PE)
                for (int i = 0; i < MAX SIZE; i++)</pre>
                     for (int j = MAX SIZE - 1; j >= 1; j--)
                         localA[i][j] = localA[i][j - 1];
                 for (int i = MAX SIZE - 1; i >= 1; i--)
                     for (int j = 0; j < MAX SIZE; j++)
                         localB[i][j] = localB[i - 1][j];
                // read new data from inputs
                // not ok here!
                for (int i = 0; i < MAX SIZE; i++) {</pre>
                     if (r >= i \&\& r < i + N)
                         localA[i][0] = A[i + ii * MAX SIZE][r - i];
                     else
                         localA[i][0] = 0;
                 }
                 for (int j = 0; j < MAX SIZE; j++) {</pre>
                     if (r \ge j \& \& r < j + N)
                         localB[0][j] = B[r - j][j + jj * MAX SIZE];
                     else
                         localB[0][j] = 0;
                 }
                // PE
                 for (int i = 0; i < MAX SIZE; i++)</pre>
                     for (int j = 0; j < MAX_SIZE; j++)</pre>
                         C[i + ii * MAX SIZE][j + jj * MAX SIZE] += localA[i][j] * localB[i][j];
             }
```

Step 3: Schedule Outer Loop Control Logic and Memory Accesses

```
// Burst reads on input matrices from global memory
// Read Input A
 readA: for(int loc = 0, i = 0, j = 0; loc < a_row*a_col; loc++, j++) {
#pragma HLS LOOP_TRIPCOUNT min=c_size*c_size max=c_size*c_size
#pragma HLS PIPELINE II=1
    if(j == a_col) { i++; j = 0;}
    localA[i][j] = a[loc];
 }
// Read Input B
 readB: for(int loc = 0, i = 0, j = 0; loc < b_row*b_col; loc++, j++) {
#pragma HLS LOOP_TRIPCOUNT min=c_size*c_size max=c_size*c_size
#pragma HLS PIPELINE II=1
    if(j == b_col) { i++; j = 0; }
    localB[i][j] = b[loc];
 }
// Burst write from output matrices to global memory
// Burst write from matrix C
writeC: for(int loc = 0, i = 0, j = 0; loc < c_row*c_col; loc++, j++) {</pre>
#pragma HLS LOOP_TRIPCOUNT min=c_size*c_size max=c_size*c_size
#pragma HLS PIPELINE II=1
    if(j == c_col) { i++; j = 0; }
    c[loc] = localC[i][j];
```

* Please see the <u>SDAccel page</u> for detailed source code

Resources

- Vivado HLS Design Hubs
- Parallel Programming for FPGAs
- <u>Cornell ECE 5775: High-Level Digital Design Automation</u>
- LegUp: Open-source HLS Compiler
- VTA design example
- Vivado SDAccel design examples

Questions?