

EECS151/251A Spring 2019 Digital Design and Integrated Circuits

Instructors:
John Wawrzynek and Arya Reais-Parsi
Lecture 21: Multiplier Circuits

Warmup

- Recall long multiplication of base-10 by hand:

$$
\begin{array}{r}
12 \\
\times \quad 56 \\
\hline
\end{array}
$$

- In base-2 (binary), we do the same thing:

$$
\begin{array}{r}
011 \\
\times \quad 101 \\
\hline
\end{array}
$$

Multiplication

$$
\left.\begin{array}{cccccc}
& & a_{3} & a_{2} & a_{1} & a_{0} \leftarrow \text { Multiplicand } \\
& & b_{3} & b_{2} & b_{1} & b_{0} \\
\cline { 4 - 6 } & & a_{3} b_{0} & a_{2} b_{0} & a_{1} b_{0} & a_{0} b_{0} \\
& a_{3} b_{1} & a_{2} b_{1} & a_{1} b_{1} & a_{0} b_{1} & \\
a_{3} b_{3} & a_{2} b_{3} & a_{1} b_{3} & a_{0} b_{3} & &
\end{array}\right\} \text { Partiplier }
$$

$$
\ldots \quad a_{1} b_{0}+a_{0} b_{1} a_{0} b_{0} \leftarrow \text { Product }
$$

Many different circuits exist for multiplication.
Each one has a different balance between speed (performance) and amount of logic (cost).

"Shift and Add" Multiplier

- Sums each partial product, one at a time.
- In binary, each partial product is shifted versions of A or 0 .

Control Algorithm:

1. $\mathrm{P} \leftarrow 0, \mathrm{~A} \leftarrow$ multiplicand,
$\mathrm{B} \leftarrow$ multiplier
2. If $L S B$ of $B==1$ then add A to P else add 0
3. Shift $[P][B]$ right 1
4. Repeat steps 2 and $3 \mathrm{n}-1$ more times.
5. $[P][B]$ has product.

"Shift and Add" Multiplier

Signed Multiplication:
Remember for 2's complement numbers MSB has negative weight:

$$
X=\sum_{i=0}^{N-2} x_{i} 2^{i}-x_{n-1} 2^{n-1}
$$

$$
\begin{aligned}
\text { ex: }-6=11010_{2} & =0 \cdot 2^{0}+1 \cdot 2^{1}+0 \cdot 2^{2}+1 \cdot 2^{3}-1 \cdot 2^{4} \\
& =0+2+0+8-16=-6
\end{aligned}
$$

- Therefore for multiplication:
a) subtract final partial product
b) sign-extend partial products
- Modifications to shift \& add circuit:
a) adder/subtractor
b) sign-extender on P shifter register

Convince yourself

- What's -3×5 ?

1101
X 0101

- Combinational multiplier

- Latency \& Throughput
- Wallace Tree
- Pipelining to increase throughput
\square Smaller multipliers
- Booth encoding
- Serial, bit-serial
- Two's complement multiplier

Unsigned Combinational Multiplier

Array Multiplier

Single cycle multiply: Generates all n partial products simultaneously.

Combinational Multiplier (unsigned)

Carry-Save Addition

- Speeding up multiplication is a matter of speeding up the summing of the partial products.
- "Carry-save" addition can help.
- Carry-save addition passes (saves) the carries to the output, rather than propagating them.
carry-save add $\left\{\begin{aligned} & 3_{10} \underline{0011} \\ & c \underline{0010} \\ &=2_{10} \\ & s \underline{0110}=6_{10}\end{aligned}\right.$
- In general, carry-save addition takes in 3 numbers and produces 2.
- Sometimes called a " $3: 2$ compressor": 3 input signals into 2 in a potentially lossy operation
- Whereas, carry-propagate takes 2 and produces 1.
- With this technique, we can avoid carry propagation until final addition

Carry-save Circuits

Array Multiplier using Carry-save Addition

Array Multiplier Again

Carry-save Addition

CSA is associative and commutative. For example:

$$
\left(\left(\left(X_{0}+X_{1}\right)+X_{2}\right)+X_{3}\right)=\left(\left(X_{0}+X_{1}\right)+\left(X_{2}+X_{3}\right)\right)
$$

- A balanced tree can be used to reduce the logic delay.
- It doesn't matter where you add the carries and sums, as long as you eventually do add them.
- This structure is the basis of the Wallace Tree Multiplier.
- Partial products are summed with the CSA tree. Fast CPA (ex: CLA) is used for final sum.
- Multiplier delay $\alpha \log _{3 / 2} \mathrm{~N}+$ $\log _{2} N$

Increasing Throughput: Pipelining

Idea: split processing across several clock cycles by dividing circuit into pipeline stages separated by registers that hold values passing from one stage to the next.

Throughput $=1 / 4 t_{P D, F A}$ instead of $1 / 8 t_{P D, F A}{ }^{16}$

Smaller Combinational Multipliers

Booth Recoding: Higher-radix mult.

Idea: If we could use, say, 2 bits of the multiplier in generating each partial product we would halve the number of columns and halve the latency of the multiplier!

Booth's insight: rewrite 2*A and $3^{*} A$ cases, leave 4A for next partial product to do!

$$
\begin{aligned}
B_{K+1, k^{*}} A & =0^{\star} A \rightarrow 0 \\
& =1^{\star} A \rightarrow A \\
& =2^{\star} A \rightarrow 4 A-2 A \\
& =3^{\star} A \rightarrow 4 A-A
\end{aligned}
$$

Booth recoding

(On-the-fly canonical signed digit encoding!)
current bit pair

A "1" in this bit means the previous stage needed to add 4*A. Since this stage is shifted by 2 bits with respect to the previous stage, adding 4* A in the previous stage is like adding A in this stage!

Example

Bit-serial Multiplier

- Bit-serial multiplier (n^{2} cycles, one bit of result per n cycles):

- Control Algorithm:

```
repeat n cycles { // outer (i) loop
    repeat n cycles{ // inner (j) loop
        shiftA, selectSum, shiftHI
    }
    shiftB, shiftHI, shiftLOW, reset
}
```

Note: The occurrence of a control signal x means $x=1$. The absence of x means $x=0$.

Signed Multipliers

Combinational Multiplier (signed!)

$|$| $-2^{\mathrm{N}-1}$ | $2^{\mathrm{N}-2}$ | \cdots | \cdots | \cdots | 2^{3} | 2^{2} | 2^{1} | 2^{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

"sign bit"

$(+6)$
0001110

Combinational Multiplier (signed)

2's Complement Multiplication (Baugh-Wooley)

Step 1: †wo's complement operands so high order bit is -2^{N-1}. Must sign extend partial products and subtract the last one

				$\begin{array}{r} \mathrm{X} 3 \\ \times \quad \mathrm{Y} 3 \end{array}$	$\begin{aligned} & \mathrm{X} 2 \\ & \mathrm{Y} 2 \end{aligned}$	$\begin{aligned} & \mathrm{X} 1 \\ & \mathrm{Y} 1 \end{aligned}$	$\begin{aligned} & \text { X0 } \\ & \text { YO } \end{aligned}$
X3Y0	X3Y0	X3Y0	X3Y0	X3Y0	X2Y0	X1Y0	X0Y0
+ X3Y1	X3Y1	X3Y1	X3Y1	X2Y1	X1Y1	X0Y1	
+ X3Y2	X3Y2	X3Y2	X2Y2	X1Y2	X0Y2		
- X3Y3	X3Y3	X2Y3	X1Y3	X0Y3			
Z7	Z6	Z5	Z4	Z3	Z2	z1	z0

Step 2: don't want all those extra additions, so add a carefully chosen constant, remembering to subtract it at the end. Convert subtraction into add of (complement +1).

```
X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
                    1
X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
    1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ 1
l X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 
```

Step 3: add the ones to the partial products and propagate the carries. All the sign extension bits go away!

				$\overline{\mathrm{X} 3 \mathrm{Y} 0}$	X2Y0 X1Y0	XOYO
+			X3Y1	X2Y1	X1Y1 X0Y1	
+		x2Y2	X1Y2	X0Y2		
+	X3Y3	X2Y3	X1Y3	X0Y3		
+						
+				1		
-	1	1	1	1		

Step 4: finish computing the constants...

				$\overline{\mathrm{X} 3 \mathrm{YO}}$	X 2 Y	X1Y0	XOYO
$+$			X3Y1	X2Y1	X1Y	X0Y1	
+		X2Y2	X1Y2	X0Y2			
+	X3Y3	X2Y3	X1Y3	X0Y3			
+				1			
+	1			1			

Result: multiplying 2's complement operands takes just about same amount of hardware as multiplying unsigned operands!

2's Complement Multiplication

Example

- What's $-3 x-5$?

$$
\begin{array}{r}
1101 \\
\times 1011 \\
\hline
\end{array}
$$

Multiplication in Verilog

You can use the "*" operator to multiply two numbers:

```
wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!
```

If you want Verilog to treat your operands as signed two's complement numbers, add the keyword signed to your wire or reg declaration:

```
wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!
```

Remember: unlike addition and subtraction, you need different circuitry if your multiplication operands are signed vs. unsigned. Same is true of the >>> (arithmetic right shift) operator. To get signed operations all operands must be signed.

```
wire signed [9:0] a;
wire [9:0] b;
wire signed [19:0] result = a*$signed(b);
```

To make a signed constant: 10'sh37C

