
EE141

EECS151/251A 
Spring 2019  
Digital Design and
Integrated Circuits
Instructors:
John Wawrzynek and Arya Reais-Parsi

Lecture 21: 
Multiplier Circuits

Page

Warmup
• Recall long multiplication of base-10 by hand:

• In base-2 (binary), we do the same thing:

!2

 12
 56x

 011
 101x

Page

Multiplication
 a3 a2 a1 a0 Multiplicand
 b3 b2 b1 b0 Multiplier

 X a3b0 a2b0 a1b0 a0b0

 a3b1 a2b1 a1b1 a0b1 Partial

 a3b2 a2b2 a1b2 a0b2 products
a3b3 a2b3 a1b3 a0b3

 . . . a1b0+a0b1 a0b0 Product

 Many different circuits exist for multiplication.
Each one has a different balance between
speed (performance) and amount of logic (cost).

!3

Control Algorithm:
 1. P ← 0, A ← multiplicand,
 B ← multiplier
 2. If LSB of B==1 then add A to P
 else add 0
 3. Shift [P][B] right 1
 4. Repeat steps 2 and 3 n-1 more

times.
 5. [P][B] has product.

Page

“Shift and Add” Multiplier
• Sums each partial

product, one at a time.
• In binary, each partial

product is shifted
versions of A or 0.

• Cost α n, Τ = n clock cycles.
• What is the critical path for

determining the min clock
period?

!4

Page

“Shift and Add” Multiplier
Signed Multiplication:
 Remember for 2’s complement numbers MSB has negative weight:

 ex: -6 = 110102 = 0•20 + 1•21 + 0•22 + 1•23 - 1•24

 = 0 + 2 + 0 + 8 - 16 = -6

• Therefore for multiplication:
 a) subtract final partial product
 b) sign-extend partial products
• Modifications to shift & add circuit:
 a) adder/subtractor
 b) sign-extender on P shifter register

!5

Page

Convince yourself
• What’s -3 x 5?

!6

 1101
 0101x

EE141

Outline
❑ Combinational multiplier
❑ Latency & Throughput
▪ Wallace Tree
▪ Pipelining to increase

throughput
❑ Smaller multipliers
▪ Booth encoding
▪ Serial, bit-serial

❑ Two’s complement
multiplier

 7

EE141

Unsigned
Combinational

Multiplier

Page

Array Multiplier

Each row: n-bit adder with AND gates

What is the critical path?

Single cycle multiply: Generates all n partial products simultaneously.

!9

EE141

Combinational Multiplier (unsigned)
 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

Propagation delay ~2N

multiplicand
multiplier

Partial products, one for each bit in
multiplier (each bit needs just one
AND gate)

 10

Page

Carry-Save Addition
• Speeding up multiplication is a

matter of speeding up the
summing of the partial products.

• “Carry-save” addition can help.
• Carry-save addition passes

(saves) the carries to the output,
rather than propagating them.

• Example: sum three numbers,
 310 = 0011, 210 = 0010, 310 = 0011

 310 0011
+ 210 0010
 c 0100 = 410
 s 0001 = 110

 310 0011
 c 0010 = 210

 s 0110 = 610

 1000 = 810

carry-save add

carry-save add

carry-propagate add

• In general, carry-save addition takes in 3 numbers and produces 2.
• Sometimes called a “3:2 compressor”: 3 input signals into 2 in a potentially lossy

operation
• Whereas, carry-propagate takes 2 and produces 1.
• With this technique, we can avoid carry propagation until final addition

!11

Page

Carry-save Circuits

• When adding sets of numbers,
carry-save can be used on all
but the final sum.

• Standard adder (carry
propagate) is used for final sum.

• Carry-save is fast (no carry
propagation) and cheap (same
cost as ripple adder)

!12

Page

Array Multiplier using Carry-save Addition

Fast carry-
propagate adder

!13

Page

Array Multiplier Again

Each row: n-bit adder with AND gates

What is the critical path?
!14

Fast carry-propagate adder

Page

Carry-save Addition
CSA is associative and commutative. For example:
 (((X0 + X1) + X2) + X3) = ((X0 + X1) +(X2 + X3))

• A balanced tree can be used to
reduce the logic delay.

• It doesn’t matter where you add
the carries and sums, as long
as you eventually do add them.

• This structure is the basis of the
Wallace Tree Multiplier.

• Partial products are summed
with the CSA tree. Fast CPA
(ex: CLA) is used for final sum.

• Multiplier delay α log3/2N +
log2N

!15

EE141

Increasing Throughput: Pipelining

= register

Idea: split processing
across several clock
cycles by dividing circuit
into pipeline stages
separated by registers
that hold values passing
from one stage to the
next.

Throughput = 1/4tPD,FA instead of 1/8tPD,FA 16

EE141

Smaller Combinational
Multipliers

EE141

Booth Recoding: Higher-radix mult.

 AN-1 AN-2 … A4 A3 A2 A1 A0
 BM-1 BM-2 … B3 B2 B1 B0x

...

2M/2

BK+1,K*A = 0*A → 0  
 = 1*A → A
 = 2*A → 4A – 2A
 = 3*A → 4A – A

Idea: If we could use, say, 2 bits of the multiplier in generating each
partial product we would halve the number of columns and halve the
latency of the multiplier!

Booth’s insight: rewrite 2*A
and 3*A cases, leave 4A for
next partial product to do! 18

EE141

Booth recoding

BK+1
0
0
0
0
1
1
1
1

BK
0
0
1
1
0
0
1
1

BK-1
0
1
0
1
0
1
0
1

action

add 0 
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage needed to add 4*A. Since
this stage is shifted by 2 bits with respect to the previous stage,
adding 4*A in the previous stage is like adding A in this stage!

-2*A+A

-A+A

from previous bit paircurrent bit pair
(On-the-fly canonical signed digit encoding!)

BK+1,K*A = 0*A → 0  
 = 1*A → A
 = 2*A → 4A – 2A
 = 3*A → 4A – A

 19

EE141

Example

 20

Page

Bit-serial Multiplier
• Bit-serial multiplier (n2 cycles, one bit of result per n cycles):

• Control Algorithm:

repeat n cycles { // outer (i) loop
 repeat n cycles{ // inner (j) loop
 shiftA, selectSum, shiftHI
 }
 shiftB, shiftHI, shiftLOW, reset
}

Note: The occurrence of a control
signal x means x=1. The absence
of x means x=0.

!21

EE141

Signed Multipliers

EE141

Combinational Multiplier (signed!)

 (-3) * (-2)

 (-3) 1 0 1 (X)
 (-2) * 1 1 0 (Y)

 0 0 0 0 0 0 Y0*X = 0
 + 1 1 1 0 1 2Y1*X = -6
 - 1 1 0 1 4Y2*X = -12

 (+6) 0 0 0 1 1 0

 23

EE141

Combinational Multiplier (signed)
 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

x3

FA

x2

FA

x1

FA

x2

FA

x1

FA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

FAFAFA

FA

FA

FA

FA

1
There are tricks we can use
to eliminate the extra
circuitry we added… 24

EE141

2’s Complement Multiplication
(Baugh-Wooley)

 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1
+ 1 1

Step 1: two’s complement operands so high
order bit is –2N-1. Must sign extend partial
products and subtract the last one

Step 2: don’t want all those extra additions, so
add a carefully chosen constant, remembering
to subtract it at the end. Convert subtraction
into add of (complement + 1).

Step 3: add the ones to the partial products
and propagate the carries. All the sign
extension bits go away!

Step 4: finish computing the constants…

Result: multiplying 2’s complement operands
takes just about same amount of hardware as
multiplying unsigned operands!

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+
+ 1
- 1 1 1 1

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ 1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ 1
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+ 1
+ 1
- 1 1 1 1

–B = ~B + 1

 25

EE141

2’s Complement Multiplication

FA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

HA

1

1

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

 26

Page

Example
• What’s -3 x -5?

!27

 1101
 1011x

EE141

Multiplication in Verilog
You can use the “*” operator to multiply two numbers:

wire [9:0] a,b;
wire [19:0] result = a*b; // unsigned multiplication!

If you want Verilog to treat your operands as signed two’s complement
numbers, add the keyword signed to your wire or reg declaration:

wire signed [9:0] a,b;
wire signed [19:0] result = a*b; // signed multiplication!

Remember: unlike addition and subtraction, you need different circuitry
if your multiplication operands are signed vs. unsigned. Same is true of
the >>> (arithmetic right shift) operator. To get signed operations all
operands must be signed.

To make a signed constant: 10’sh37C

wire signed [9:0] a;
wire [9:0] b;
wire signed [19:0] result = a*$signed(b);

 28

