
EE141

EECS 151/251A 
Spring	2019  
Digital	Design	and	Integrated	
Circuits
Instructor:		
J.	Wawrzynek

Lecture 2

EE141

Outline
❑ Methodology Basics
❑ Digital Logic – Basic

Concepts
❑ Early Design
❑ Design Implementation

Alternatives
❑ Design Flows
❑ ASICs

 2

EE141

Methodology Basics

EE141
 4

Basic Design Tradeoffs

• Improve on one at the expense of the others
• Tradeoffs exist at every level in the system design
• Design Specification

– Functional Description
– Performance, cost, power constraints

• Designer must make the tradeoffs needed to achieve the
function within the constraints

EE141
 5

Design Space & Optimality

Performance

Cost
low-performance at low-cost

high-performance at high-cost

“Pareto Optimal” Frontier

(# of components)

(tasks/sec)

EE141

Design Methodologies
❑ Top-Down Design

▪ Starts at the top (root) and works down
by successive refinement.

❑ Bottom-up Design
▪ Starts at the leaves & puts pieces

together to build up the design.
❑ Which is better?

▪ In practice both are needed & used
▪ Top-down to handle the complexity

(divide and conquer)
▪ Bottom-up since structure influenced by

available primitives  
(in a well designed system)

 6

EE141

Digital Logic  
Basic Concepts

EE141
 8

Digital Integrated Circuit Example
• (Old) PowerPC microprocessor micro-

photograph
– Superscalar (3 instructions/cycle)
– 6 execution units (2 integer and 1 double

precision IEEE floating point)
– 32 KByte Instruction and Data L1 caches
– Dual Memory Management Units (MMU)
– External L2 Cache interface with integrated

controller and cache tags.

Comprises only transistors and wires.

 Connections to outside world (ex. motherboard)
 Memory interface
 Power (Vdd, GND)
 Clock input

EE141
 9

A source of regularly occurring pulses used to measure the passage of
time.

❑ Waveform diagram shows evolution of signal value (in voltage) over time.

❑ Usually comes from an off-chip crystal-controlled oscillator.
❑ One main clock per chip/system.
❑ Distributed throughout the chip/system.
❑ “Heartbeat” of the system. Controls the rate of computation by directly

controlling all data transfers.

Τ represents the
time of one clock
“cycle”.

Clock Signal

EE141
 10

Data Signals

The facts:
1. Low-voltage represents binary 0 and high-voltage, binary 1.
2. Circuits are designed and built to be tolerant of noise and “restoring”.

Deviations from ideal voltages are ignored. Outputs close to ideal.
3. In synchronous systems, all changes follow clock edges.

Random adder circuit at a
random point in time:

Observations:
• Most of the time, signals are in

either low- or high-voltage position.
• When the signals are at the high-

or low-voltage positions, they are
not all the way to the voltage
extremes (or they are past).

• Changes in the signals correspond
to changes in clock signal (but don’t
change every cycle).

EE141
 11

Circuit Delay
Digital circuits cannot produce

outputs instantaneously.
❑ In general, the delay through a

circuit is called the propagation
delay. It measures the time
from when inputs arrive until the
outputs change.

❑ The delay amount is a function
of many things. Some out of
the control of the circuit
designer:
▪ Processing technology, the

particular input values.
❑ And others under her control:

▪ Circuit structure, physical
layout parameters.

EE141
 12

Combinational Logic Blocks
Example four-input function:

❑ Output a function only of the
current inputs (no history).

❑ Truth-table representation of
function. Output is explicitly
specified for each input
combination.

❑ In general, CL blocks have more
than one output signal, in which
case, the truth-table will have
multiple output columns.

a b c d y
0 0 0 0 F(0,0,0,0)
0 0 0 1 F(0,0,0,1)
0 0 1 0 F(0,0,1,0)
0 0 1 1 F(0,0,1,1)
0 1 0 0 F(0,1,0,0)
0 1 0 1 F(0,1,0,1)
0 1 1 0 F(0,1,1,0)
1 1 1 1 F(0,1,1,1)
1 0 0 0 F(1,0,0,0)
1 0 0 1 F(1,0,0,1)
1 0 1 0 F(1,0,1,0)
1 0 1 1 F(1,0,1,1)
1 1 0 0 F(1,1,0,0)
1 1 0 1 F(1,1,0,1)
1 1 1 0 F(1,1,1,0)
1 1 1 1 F(1,1,1,1)

Truth Table

EE141
 13

Example CL Block
❑ 2-bit adder. Takes two 2-bit

integers and produces 3-bit
result.

❑ Think about truth table for 32-bit
adder. It’s possible to write out,
but it might take a while!

a1 a0 b1 b0 c2 c1 c0
00 00 000

00 01 001

00 10 010

00 11 011

01 00 001

01 01 010

01 10 011

01 11 100

10 00 010

10 01 011

10 10 100

10 11 101

11 00 011

11 01 100

11 10 101

11 11 110

Theorem: Any combinational logic function can be
implemented as a networks of logic gates.

EE141
 14

Logic Gates
ab c
00 0
01 0
10 0
11 1

AND ab c
00 0
01 1
10 1
11 1

OR NOT a b
0 1
1 0

ab c
00 1
01 1
10 1
11 0

NAND ab c
00 1
01 0
10 0
11 0

NOR ab c
00 0
01 1
10 1
11 0

XOR

❑ Logic gates are often the primitive elements out of which combinational
logic circuits are constructed.
▪ In some technologies, there is a one-to-one correspondence between logic

gate representations and actual circuits (ASIC standard cells have gate
implementations).

▪ Other times, we use them just as another abstraction layer (FPGAs have no
real logic gates).

❑ How about these gates with more than 2 inputs?
❑ Do we need all these types?

EE141
 15

Example Logic Circuit

How do we know that these two representations are equivalent?

a b c y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

a

b

c

y

Will come back to this later!

EE141
 16

Logic Gate Implementation
❑ Logic circuits have been built out of many different

technologies. If we have a basic logic gate (AND or OR)
and inversion we can build a complete logic family.

CMOS Gate

DTL
Hydraulic

Mechanical LEGO logic gates.
A clockwise rotation
represents a binary “one” while
a counter-clockwise rotation
represents a binary “zero.”

EE141
 17

Restoration/Regeneration
❑ A necessary property of any suitable technology for logic

circuits is "Restoration” or “Regeneration”
❑ Circuits need:

▪ to ignore noise and other non-idealities at the their inputs, and
▪ generate "cleaned-up" signals at their output.

❑ Otherwise, each stage propagates input noise to their
output and eventually noise and other non-idealities would
accumulate and signal content would be lost.

EE141
 18

Inverter Example of Restoration

❑ Inverter acts like a “non-linear” amplifier
❑ The non-linearity is critical to restoration
❑ Other logic gates act similarly with respect to input/output

relationship.

Example (look at 1-input gate, to keep it simple):

Idealize Inverter Actual Inverter

VIN VOUT

EE141
 19

State Elements: circuits that store info

• The value stored by the register appears on the output
(after a small delay).

• Until the next load, changes on the data input are ignored
(unlike CL, where input changes change output).

• These get used for short term storage (ex: register file),
and to help move coordinate data movement.

• Examples: registers,
memories

• Register: Under the control
of the “load” signal, the
register captures the input
value and stores it
indefinitely.

register

output

input

load

n

n

often replace by clock signal (clk)

EE141
 20

Register Transfer Level Abstraction (RTL)
Any synchronous digital circuit can be represented with:

• Combinational Logic Blocks (CL), plus
• State Elements (registers or memories)

• State elements are
mixed in with CL
blocks to control
the flow of data.

Register file
or

Memory Block

Address
Input Data

Output Data
Write Control

clock

• Sometimes used in
large groups by
themselves for
“long-term” data
storage.

EE141

Early Design

EE141
 22

IC Design in the 70’s and early 80’s

The Intel 4004 microprocessor, which was introduced in 1971. The
4004 contained 2300 transistors and performed 60,000 calculations
per second. Courtesy: Intel.

Introduced to
help sell memory
chips!

Federico Faggin,
Ted Hoff,
Stan Mazor

❑ Circuit design, layout, and processing tightly linked.

❑ Logic design and layout was all done by-hand in an ad-hoc way

❑ Chip design was the domain of industry (Fairchild, Intel, Texas Instruments, …). These
were IC processing companies. Those who controlled the physics controlled the
creative agenda!

EE141
 23

Early Design Practice
❑ Initially, designs were represented by hand drawings. Then

masks where made by transferring drawings to rubylith.
– Base layer of heavy transparent dimensionally stable Mylar. A thin

film of deep red cellophane-like material covers the base layer.
Patterns formed by cutting (often by hand) the transparent covering.

‣ Later transition to an electronic
format (CIF, GDS) meant:
Layouts easily be stored and
transmitted. Written to tape and
transferred to manufacturer (tape-
out).Transmitted over the network
(new idea back then). Software could
automatically check for layout errors.
Generated from a program - huge
idea.

EE141

The start of the IC Design Revolution

 24

EE141
 25

Geometric Design Rules
❑ Early on, to generate the mask information for fabrication, the designer

needed intimate knowledge of the manufacturing process. Even once
this knowledge was distilled to a set of “Geometric Design Rules”, this
set of rules was voluminous with many special cases.

❑ Academics (C. Mead and others) came up with a much simplified set of
design rules (single page description). A sort of “API” or abstraction of
the process (back-end processing could automatically convert this
information into masks).

‣ Sufficiently small set that
designers could
memorize. Sufficiently
abstract to allow process
engineers to shrink the
process and preserve
existing layouts. Process
resolution becomes a
“parameter”, λ.

EE141
 26

Key Development: Silicon Foundries
❑ Separate the designer from the fabricator: Modeled after the

printing industry. (Very few authors actually own and run printing
presses!)

❑ Simple standard geometric design rules where the key: these form
the “contract” between the designer and manufacturer.

❑ Designer sends the layout (in CIF format), foundry manufactures
the chip and send back. Designer promises not to violate the
design rules. Foundry promises to accurately follow layout.

‣ A scalable model for the industry:
IC fab is expensive and complex. Amortizes
the expense over many designers (batch
processing with deep queues help).
Designers and companies not held back by
need to develop and maintain large
expensive factories.“fabless” semiconductor
companies - lots of these and very few
foundries.

TSMC, Global Foundries,
UMC, Samsung, SMIC, …

EE141
 27

Computer Aided Design (1)
Several advances lead to the development of interactive
tools for generating layout:
❑ Computer based layout representation (CIF, GDS).
❑ Advances in computer graphics (thanks to Ivan

Sutherland and friends) and display devices.
❑ Personal “workstation” (Xerox Alto - Chuck Thacker).

“Back room” computers didn’t have the necessary
bandwidth to the display.

❑ Berkeley version - MAGIC

EE141
 28

Early ’80’s Design Methodology and Flow

Schematic + Full-
Custom Layout
▪ SPICE for timing,
▪ switch-level simulation for

overall functionality,
▪ hand layout,
▪ no power analysis,
▪ layout verified with geometric

Design Rule Checker (DRC)
and later also Layout versus
Schematic (LVS) Checkers

Transistor Schematics

switch
simulator

hand
layout

layout
vs.

schematic

CIF file

geometric
design rule

checker

SPICE

Specification

EE141
 29

Computer Aided Design (2)
❑ For some time after CIF was invented: Layout was generated

by hand, then typed in as a CIF file with a text editor.
❑ Layout compilers

– Soon some designers started embedding CIF primitives in
conventional programming languages: LISP, pascal, fortran, C.

– This allows designers to write programs that generated layout.
Such programs could be parameterized:

define GENERATE_RAM(rows, columns) {
 for I from 1 to rows
 for J from 1 to columns
 (GENERATE_BITCELL)}
GENERATE_RAM(128, 32);

‣ Lead to circuit/layout generation from higher level
descriptions.

‣ Eventually, Cadence and Synopsys formed out of Berkeley.

EE141

Implementation
Alternatives & Design Flow

EE141
 31

Implementation Alternative Summary

What are the important metrics of comparison?

Full-custom: All circuits/transistors layouts optimized for
application.

Standard-cell: Arrays of small function blocks (gates, FFs)
automatically placed and routed.

Gate-array
(structured ASIC):

Partially prefabricated wafers customized with
metal layers or vias.

FPGA: Prefabricated chips customized with loadable latches
or fuses.

Microprocessor: Instruction set interpreter customized through
software.

Domain Specific
Processor: Special instruction set interpreters (ex: DSP, NP, GPU).

These days, “ASIC” almost always means Standard-cell.

EE141
 32

The Important Distinction
Instruction Binding Time

▪ When do we decide the functions (what operation is to
be performed)?

• General Principles
Earlier the decision is bound, the less area, delay/energy

required for the implementation.
Later the decision is bound, the more flexible the device.

A. DeHon

EE141
 33

Full-Custom
❑ Circuit styles and transistors are custom

sized and drawn to optimize die, size, power,
performance.

❑ High NRE (non-recurring engineering) costs
▪ Time-consuming and error prone layout

❑ Hand-optimizing the layout can result in
small die for low per unit costs, extreme-low-
power, or extreme-high-performance.

❑ Common today for analog design.
❑ Requires full set of custom masks.
❑ High NRE usually restricts use to high-

volume applications/markets or highly-
constrained and cost insensitive markets.

EE141
 34

Standard-Cell*
❑ Based around a set of pre-designed (and verified) cells

▪ Ex: NANDs, NORs, Flip-Flops, counters slices, buffers, …
❑ Each cell comes complete with:

▪ layout (perhaps for different technology nodes and processes),
▪ Simulation, delay, & power models.

❑ Chip layout is automatic, reducing NREs (usually no hand-layout).
❑ Less optimal use of area and power, leading to higher per die costs than

full-custom.
❑ Commonly used with other design implementation strategies (large

blocks for memory, I/O blocks, etc.)

EE141
 35

Gate Array
❑ Prefabricated wafers of “active” & gate layers & local

interconnect, comprising, primarily, rows of transistors. Customize
as needed with “back-end” metal processing (contact cuts, metal
wires). Could use a different factory.

❑ CAD software understands how to make gates and registers.

EE141
 36

Gate Array
• Shifts large portion of design and mask NRE to vendor.
• Shorter design and processing times, reduced time to market for

user.
• Highly structured layout with fixed size transistors leads to large

sub-circuits (ex: Flip-flops) and higher per die costs.
• Memory arrays are particularly inefficient, so often prefabricated,

also:

Sea-of-gates,
structured ASIC,
master-slice.

EE141
 37

Field Programmable Gate Arrays (FPGA)

❑ Fuses, EPROM, or Static RAM cells are used to store the “configuration”.
▪ Here, it determines function implemented by LUT, selection of Flip-flop, and

interconnection points.
❑ Many FPGAs include special circuits to accelerate adder carry-chain and

many special cores: RAMs, MAC, Enet, PCI, SERDES, CPUs, ...

■ Two-dimensional
array of simple logic-
and interconnection-
blocks.

■ Typical architecture:
Look-up-tables (LUTs)
implement any
function of n-inputs
(n=3 in this case).

■ Optional connected
Flip-flop with each
LUT.

EE141
 38

FPGA versus ASIC

• ASIC: Higher NRE costs (10’s of $M). Relatively Low cost per
die (10’s of $ or less).

• FPGAs: Low NRE costs. Relatively low silicon efficiency ⇒
high cost per part (> 10’s of $ to 1000’s of $).

• Cross-over volume from cost effective FPGA design to ASIC
was often in the 100K range.

volume

total
cost

FPGAs cost
effective

ASICs cost
effective

FPGA

ASIC

EE141
 39

Microprocessors
❑ Where relatively low performance and/or

high flexibility is needed, a viable
implementation alternative:
▪ Software implements desired function
▪ “Microcontroller”, often with built in nonvolatile

program memory and used as single function.
❑ Furthermore, instruction set processors are

an “abstraction” level. Two ways:
▪ Instruction Set Architecture (ISA)
▪ “Synthesizable” RTL model (“soft core”, available

in HDL)
❑ Their implementation hosted on a variety of

implementation platforms: standard-cell,
gate-array, FPGA, other processors?

EE141
 40

System-on-chip (SOC)

❑ Pre-verified block designs, standard bus interfaces (or
adapters) ease integration - lower NREs, shorten TTM.

• Brings together: standard cell blocks,
custom analog blocks, processor cores,
memory blocks, embedded FPGAs, …

• Standardized on-chip buses (or
hierarchical interconnect) permit “easy”
integration of many blocks.

– Ex: AXI, AMBA, Sonics, …
• “IP Block” business model: Hard- or soft-

cores available from third party designers.

• ARM, inc. is the shining example. Hard-
and “synthesizable” RISC processors.

• ARM and other companies provide,
Ethernet, USB controllers, analog
functions, memory blocks, …

Qualcomm
Snapdragon

EE141

ASICs

EE141

Verilog to ASIC layout flow
❑ “push-button” approach

 42

EE141

Standard cell layout methodology

❑ With limited # metal layers, dedicated routing channels were
needed

❑ Currently area dominated by wires

1um, 2-metal process Modern sub-100nm process
“Transistors are free things  
that fit under wires”

 43

EE141

The ASIC flow

 44

EE141
 45

Modern ASIC Methodology and Flow
RTL Synthesis Based

▪ HDL specifies design as
combinational logic + state
elements

▪ Logic Synthesis converts
hardware description to gate
and flip-flop implementation

▪ Cell instantiations needed for
blocks not inferred by synthesis
(typically RAM)

▪ Event simulation verifies RTL
▪ “Formal” verification compares

logical structure of gate netlist
to RTL

▪ Place & route generates layout
▪ Timing and power checked

statically
▪ Layout verified with LVS and GDRC

RTL (Verilog/VHDL) + cell instantiations

logic
synthesis

event
simulator

cell place & route

GDSII timing/
power

analysis

“formal”
verification

Specification

gate netlist (with area/perf/pwr estimates)

GDRC, LVS, other checks

EE141

Standard cell design
❑ Layout considerations

 46

EE141

Standard cell characterization

 47

EE141

Macro modules

 48

EE141

The “Design closure” problem
❑ Biggest problem are wires (signals and clock)

 49

