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Methodology Basics
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Basic Design Tradeoffs

• Improve on one at the expense of the others 
• Tradeoffs exist at every level in the system design
• Design Specification

– Functional Description
– Performance, cost, power constraints

• Designer must make the tradeoffs needed to achieve the 
function within the constraints 
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Design Space & Optimality

Performance

Cost
low-performance at low-cost

high-performance at high-cost

“Pareto Optimal” Frontier

(# of components)

(tasks/sec)
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Design Methodologies
❑ Top-Down Design 

▪ Starts at the top (root) and works down 
by successive refinement.  

❑ Bottom-up Design  
▪ Starts at the leaves & puts pieces 

together to build up the design.  
❑ Which is better? 

▪ In practice both are needed & used 
▪ Top-down to handle the complexity 

(divide and conquer)  
▪ Bottom-up since structure influenced by 

available primitives  
(in a well designed system)
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Digital Logic  
Basic Concepts
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Digital Integrated Circuit Example
• (Old) PowerPC microprocessor micro-

photograph 
– Superscalar (3 instructions/cycle) 
– 6 execution units (2 integer and 1 double 

precision IEEE floating point) 
– 32 KByte Instruction and Data L1 caches 
– Dual Memory Management Units (MMU) 
– External L2 Cache interface with integrated 

controller and cache tags. 

Comprises only transistors and wires. 

         Connections to outside world (ex. motherboard) 
 Memory interface 
 Power (Vdd, GND) 
 Clock input



EE141
 9

A source of regularly occurring pulses used to measure the passage of 
time. 

❑ Waveform diagram shows evolution of signal value (in voltage) over time. 

❑ Usually comes from an off-chip crystal-controlled oscillator.  
❑ One main clock per chip/system.  
❑ Distributed throughout the chip/system. 
❑ “Heartbeat” of the system.  Controls the rate of computation by directly 

controlling all data transfers.

Τ represents the 
time of one clock 
“cycle”.

Clock Signal
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Data Signals

The facts: 
1. Low-voltage represents binary 0 and high-voltage, binary 1. 
2. Circuits are designed and built to be tolerant of noise and “restoring”.  

Deviations from ideal voltages are ignored.  Outputs close to ideal. 
3. In synchronous systems, all changes follow clock edges.

Random adder circuit at a 
random point in time: 

Observations: 
• Most of the time, signals are in 

either low- or high-voltage position. 
• When the signals are at the high- 

or low-voltage positions, they are 
not all the way to the voltage 
extremes (or they are past). 

• Changes in the signals correspond 
to changes in clock signal (but don’t 
change every cycle).
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Circuit Delay
Digital circuits cannot produce 

outputs instantaneously. 
❑ In general, the delay through a 

circuit is called the propagation 
delay.  It measures the time 
from when inputs arrive until the 
outputs change. 

❑ The delay amount is a function 
of many things.  Some out of 
the control of the circuit 
designer: 
▪ Processing technology, the 

particular input values. 
❑ And others under her control: 

▪ Circuit structure, physical 
layout parameters.
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Combinational Logic Blocks
Example four-input function: 

❑ Output a function only of the 
current inputs (no history). 

❑ Truth-table representation of 
function.  Output is explicitly 
specified for each input 
combination. 

❑ In general, CL blocks have more 
than one output signal, in which 
case, the truth-table will have 
multiple output columns.

a b c d         y 
0 0 0 0  F(0,0,0,0) 
0 0 0 1  F(0,0,0,1) 
0 0 1 0  F(0,0,1,0) 
0 0 1 1  F(0,0,1,1) 
0 1 0 0  F(0,1,0,0) 
0 1 0 1  F(0,1,0,1) 
0 1 1 0  F(0,1,1,0) 
1 1 1 1  F(0,1,1,1) 
1 0 0 0  F(1,0,0,0) 
1 0 0 1  F(1,0,0,1) 
1 0 1 0  F(1,0,1,0) 
1 0 1 1  F(1,0,1,1) 
1 1 0 0  F(1,1,0,0) 
1 1 0 1  F(1,1,0,1) 
1 1 1 0  F(1,1,1,0) 
1 1 1 1  F(1,1,1,1)

Truth Table
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Example CL Block
❑ 2-bit adder.  Takes two 2-bit 

integers and produces 3-bit 
result. 

❑ Think about truth table for 32-bit 
adder.  It’s possible to write out, 
but it might take a while!

a1 a0 b1 b0 c2 c1 c0
00 00 000

00 01 001

00 10 010

00 11 011

01 00 001

01 01 010

01 10 011

01 11 100

10 00 010

10 01 011

10 10 100

10 11 101

11 00 011

11 01 100

11 10 101

11 11 110

Theorem:  Any combinational logic function can be 
implemented as a networks of logic gates. 
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Logic Gates
ab  c 
00  0 
01  0 
10  0 
11  1

AND ab  c 
00  0 
01  1 
10  1 
11  1

OR NOT a  b 
0  1 
1  0

ab  c 
00  1 
01  1 
10  1 
11  0

NAND ab  c 
00  1 
01  0 
10  0 
11  0

NOR ab  c 
00  0 
01  1 
10  1 
11  0

XOR

❑ Logic gates are often the primitive elements out of which combinational 
logic circuits are constructed.  
▪ In some technologies, there is a one-to-one correspondence between logic 

gate representations and actual circuits (ASIC standard cells have gate 
implementations). 

▪ Other times, we use them just as another abstraction layer (FPGAs have no 
real logic gates). 

❑ How about these gates with more than 2 inputs? 
❑ Do we need all these types?
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Example Logic Circuit

How do we know that these two representations are equivalent?

a b c   y 
0 0 0   0 
0 0 1   0 
0 1 0   0 
0 1 1   1 
1 0 0   0 
1 0 1   1 
1 1 0   1 
1 1 1   1

a

b

c

y

Will come back to this later!
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Logic Gate Implementation
❑ Logic circuits have been built out of many different 

technologies.  If we have a basic logic gate (AND or OR) 
and inversion we can build a complete logic family.  

CMOS Gate

DTL
Hydraulic 

Mechanical LEGO logic gates. 
A clockwise rotation 
represents a binary “one” while 
a counter-clockwise rotation 
represents a binary “zero.”
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Restoration/Regeneration
❑ A necessary property of any suitable technology for logic 

circuits is "Restoration” or “Regeneration” 
❑ Circuits need: 

▪ to ignore noise and other non-idealities at the their inputs, and 
▪ generate "cleaned-up" signals at their output. 

❑ Otherwise, each stage propagates input noise to their 
output and eventually noise and other non-idealities would 
accumulate and signal content would be lost.
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Inverter Example of Restoration

❑ Inverter acts like a “non-linear” amplifier 
❑ The non-linearity is critical to restoration 
❑ Other logic gates act similarly with respect to input/output 

relationship.

Example (look at 1-input gate, to keep it simple):

Idealize Inverter Actual Inverter

VIN VOUT
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State Elements: circuits that store info

• The value stored by the register appears on the output 
(after a small delay).  

• Until the next load, changes on the data input are ignored 
(unlike CL, where input changes change output). 

• These get used for short term storage (ex: register file), 
and to help move coordinate data movement.

• Examples: registers, 
memories 

• Register: Under the control 
of the “load” signal, the 
register captures the input 
value and stores it 
indefinitely.

register

output

input

load

n

n

often replace by clock signal (clk)
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Register Transfer Level Abstraction (RTL)
Any synchronous digital circuit can be represented with: 

• Combinational Logic Blocks (CL), plus 
• State Elements (registers or memories)

• State elements are 
mixed in with CL 
blocks to control 
the flow of data.

Register file
or

Memory Block

Address
Input Data

Output Data
Write Control

clock

• Sometimes used in 
large groups by 
themselves for 
“long-term” data 
storage.
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IC Design in the 70’s and early 80’s

The Intel 4004 microprocessor, which was introduced in 1971. The 
4004 contained 2300 transistors and performed 60,000 calculations 
per second. Courtesy: Intel.

Introduced to 
help sell memory 
chips!

Federico Faggin, 
Ted Hoff, 
Stan Mazor

❑ Circuit design, layout, and processing tightly linked.    

❑ Logic design and layout was all done by-hand in an ad-hoc way 

❑ Chip design was the domain of industry (Fairchild, Intel, Texas Instruments, …).  These 
were IC processing companies.  Those who controlled the physics controlled the 
creative agenda!
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Early Design Practice
❑ Initially, designs were represented by hand drawings.  Then 

masks where made by transferring drawings to rubylith. 
– Base layer of heavy transparent dimensionally stable Mylar. A thin 

film of deep red cellophane-like material covers the base layer.  
Patterns formed by cutting (often by hand) the transparent covering.

‣ Later transition to an electronic 
format (CIF, GDS) meant: 
Layouts easily be stored and 
transmitted. Written to tape and 
transferred to manufacturer (tape-
out).Transmitted over the network 
(new idea back then).  Software could 
automatically check for layout errors. 
Generated from a program - huge 
idea.
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The start of the IC Design Revolution
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Geometric Design Rules
❑ Early on, to generate the mask information for fabrication, the designer 

needed intimate knowledge of the manufacturing process.  Even once 
this knowledge was distilled to a set of “Geometric Design Rules”, this 
set of rules was voluminous with many special cases. 

❑ Academics (C. Mead and others) came up with a much simplified set of 
design rules (single page description).  A sort of “API” or abstraction of 
the process (back-end processing could automatically convert this 
information into masks).

‣ Sufficiently small set that 
designers could 
memorize.  Sufficiently 
abstract to allow process 
engineers to shrink the 
process and preserve 
existing layouts.  Process 
resolution becomes a 
“parameter”, λ.
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Key Development: Silicon Foundries
❑ Separate the designer from the fabricator:  Modeled after the 

printing industry.  (Very few authors actually own and run printing 
presses!) 

❑ Simple standard geometric design rules where the key: these form 
the “contract” between the designer and manufacturer. 

❑ Designer sends the layout (in CIF format), foundry manufactures 
the chip and send back.  Designer promises not to violate the 
design rules.  Foundry promises to accurately follow layout.

‣ A scalable model for the industry: 
IC fab is expensive and complex.  Amortizes 
the expense over many designers (batch 
processing with deep queues help).  
Designers and companies not held back by 
need to develop and maintain large 
expensive factories.“fabless” semiconductor 
companies - lots of these and very few 
foundries.

TSMC, Global Foundries, 
UMC, Samsung, SMIC, …
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Computer Aided Design (1)
Several advances lead to the development of interactive 
tools for generating layout: 
❑ Computer based layout representation (CIF, GDS). 
❑ Advances in computer graphics (thanks to Ivan 

Sutherland and friends) and display devices. 
❑ Personal “workstation” (Xerox Alto - Chuck Thacker).  

“Back room” computers didn’t have the necessary 
bandwidth to the display. 

❑ Berkeley version - MAGIC
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Early ’80’s Design Methodology and Flow

Schematic + Full-
Custom Layout 
▪ SPICE for timing,  
▪ switch-level simulation for 

overall functionality,  
▪ hand layout,  
▪ no power analysis,  
▪ layout verified with geometric 

Design Rule Checker (DRC) 
and later also Layout versus 
Schematic (LVS) Checkers

Transistor Schematics

switch 
simulator

hand 
layout

layout 
vs. 

schematic

CIF file

geometric 
design rule 

checker

SPICE

Specification
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Computer Aided Design (2)
❑ For some time after CIF was invented: Layout was generated 

by hand, then typed in as a CIF file with a text editor. 
❑ Layout compilers 

– Soon some designers started embedding CIF primitives in 
conventional programming languages:  LISP, pascal, fortran, C. 

– This allows designers to write programs that generated layout.  
Such programs could be parameterized:

define GENERATE_RAM(rows, columns) {     
  for I from 1 to rows  
   for J from 1 to columns  
     (GENERATE_BITCELL)} 
GENERATE_RAM(128, 32);

‣ Lead to circuit/layout generation from higher level 
descriptions. 

‣ Eventually, Cadence and Synopsys formed out of Berkeley.
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Implementation 
Alternatives & Design Flow
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Implementation Alternative Summary

What are the important metrics of comparison?

Full-custom: All circuits/transistors layouts optimized for 
application.

Standard-cell: Arrays of small function blocks (gates, FFs) 
automatically placed and routed.

Gate-array 
(structured ASIC):

Partially prefabricated wafers customized with 
metal layers or vias.

FPGA: Prefabricated chips customized with loadable latches 
or fuses.

Microprocessor: Instruction set interpreter customized through 
software.

Domain Specific 
Processor: Special instruction set interpreters (ex: DSP, NP, GPU).

These days, “ASIC” almost always means Standard-cell. 
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The Important Distinction
Instruction Binding Time 

▪ When do we decide the functions (what operation is to 
be performed)?

• General Principles 
Earlier the decision is bound, the less area, delay/energy 

required for the implementation. 
Later the decision is bound, the more flexible the device.

A. DeHon
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Full-Custom
❑ Circuit styles and transistors are custom 

sized and drawn to optimize die, size, power, 
performance. 

❑ High NRE (non-recurring engineering) costs 
▪ Time-consuming and error prone layout 

❑ Hand-optimizing the layout can result in 
small die for low per unit costs, extreme-low-
power, or extreme-high-performance. 

❑ Common today for analog design. 
❑ Requires full set of custom masks. 
❑ High NRE usually restricts use to high-

volume applications/markets or highly-
constrained and cost insensitive markets.
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Standard-Cell*
❑ Based around a set of pre-designed (and verified) cells 

▪ Ex: NANDs, NORs, Flip-Flops, counters slices, buffers, … 
❑ Each cell comes complete with: 

▪  layout (perhaps for different technology nodes and processes), 
▪ Simulation, delay, & power models. 

❑ Chip layout is automatic, reducing NREs (usually no hand-layout). 
❑ Less optimal use of area and power, leading to higher per die costs than 

full-custom. 
❑ Commonly used with other design implementation strategies (large 

blocks for memory, I/O blocks, etc.)
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Gate Array
❑ Prefabricated wafers of “active” & gate layers & local 

interconnect, comprising, primarily, rows of transistors. Customize 
as needed with “back-end” metal processing (contact cuts, metal 
wires).  Could use a different factory. 

❑ CAD software understands how to make gates and registers.
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Gate Array
• Shifts large portion of design and mask NRE to vendor. 
• Shorter design and processing times, reduced time to market for 

user. 
• Highly structured layout with fixed size transistors leads to large 

sub-circuits (ex: Flip-flops) and higher per die costs. 
• Memory arrays are particularly inefficient, so often prefabricated, 

also:

Sea-of-gates, 
structured ASIC, 
master-slice.
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Field Programmable Gate Arrays (FPGA)

❑ Fuses, EPROM, or Static RAM cells are used to store the “configuration”.   
▪ Here, it determines function implemented by LUT, selection of Flip-flop, and 

interconnection points. 
❑ Many FPGAs include special circuits to accelerate adder carry-chain and 

many special cores: RAMs, MAC, Enet, PCI, SERDES, CPUs, ...

■ Two-dimensional 
array of simple logic- 
and interconnection-
blocks. 

■ Typical architecture: 
Look-up-tables (LUTs) 
implement any 
function of n-inputs 
(n=3 in this case). 

■ Optional connected 
Flip-flop with each 
LUT.
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FPGA versus ASIC

• ASIC: Higher NRE costs (10’s of $M). Relatively Low cost per 
die (10’s of $ or less). 

• FPGAs: Low NRE costs. Relatively low silicon efficiency ⇒ 
high cost per part (> 10’s of $ to 1000’s of $). 

• Cross-over volume from cost effective FPGA design to ASIC 
was often in the 100K range.

volume

total
cost

FPGAs cost 
effective

ASICs cost
effective

FPGA

ASIC
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Microprocessors
❑ Where relatively low performance and/or 

high flexibility is needed, a viable 
implementation alternative: 
▪ Software implements desired function 
▪ “Microcontroller”, often with built in nonvolatile 

program memory and used as single function. 
❑ Furthermore, instruction set processors are 

an “abstraction” level.  Two ways: 
▪ Instruction Set Architecture (ISA) 
▪ “Synthesizable” RTL model (“soft core”, available 

in HDL) 
❑ Their implementation hosted on a variety of 

implementation platforms: standard-cell, 
gate-array, FPGA, other processors?
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System-on-chip (SOC)

❑ Pre-verified block designs, standard bus interfaces (or 
adapters) ease integration - lower NREs, shorten TTM.

• Brings together: standard cell blocks, 
custom analog blocks, processor cores, 
memory blocks, embedded FPGAs, … 

• Standardized on-chip buses (or 
hierarchical interconnect) permit “easy” 
integration of many blocks. 

– Ex: AXI, AMBA, Sonics, …  
• “IP Block” business model: Hard- or soft-

cores available from third party designers.

• ARM, inc. is the shining example.  Hard- 
and “synthesizable” RISC processors. 

• ARM and other companies provide, 
Ethernet, USB controllers, analog 
functions, memory blocks,  …

Qualcomm 
Snapdragon
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ASICs
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Verilog to ASIC layout flow
❑ “push-button” approach

 42
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Standard cell layout methodology

❑ With limited # metal layers, dedicated routing channels were 
needed 

❑ Currently area dominated by wires

1um, 2-metal process Modern sub-100nm process 
“Transistors are free things  
that fit under wires”

 43
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The ASIC flow
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Modern ASIC Methodology and Flow
RTL Synthesis Based 

▪ HDL specifies design as 
combinational logic + state 
elements 

▪ Logic Synthesis converts 
hardware description to gate 
and flip-flop implementation 

▪ Cell instantiations needed for 
blocks not inferred by synthesis 
(typically RAM) 

▪ Event simulation verifies RTL 
▪ “Formal” verification compares 

logical structure of gate netlist 
to RTL  

▪ Place & route generates layout 
▪ Timing and power checked 

statically 
▪ Layout verified with LVS and GDRC

RTL (Verilog/VHDL) + cell instantiations

logic 
synthesis

event 
simulator

cell place & route

GDSII timing/
power 

analysis

“formal” 
verification

Specification

gate netlist (with area/perf/pwr estimates)

GDRC, LVS, other checks
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Standard cell design
❑ Layout considerations

 46
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Standard cell characterization

 47



EE141

Macro modules
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The “Design closure” problem
❑ Biggest problem are wires (signals and clock)

 49


