
EE141

EECS 151/251A 
Spring	2019 
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek

Lecture 18

EE141

❑ Multi-ported RAM
❑ Combining Memory

blocks
❑ FIFOs
❑ FPGA memory blocks
❑ Memory block synthesis
❑ Caches

 2

Memory Blocks

EE141

❑ Extra circuitry and timed
control signals needed
▪ Periphery circuits add a

“fixed” area overhead
▪ Row select, sensing,

precharge must be
sequenced, based on
input clock signal

▪ Read operation needs a
clock: “synchronous
read”

 3

SRAM Block

EE141

Memory Architecture Overview

 4

❑ Word lines used to select a
row for reading or writing

❑ Bit lines carry data to/from
periphery

❑ Core aspect ratio keep
close to 1 to help balance
delay on word line versus
bit line

❑ Address bits are divided
between the two decoders

❑ Row decoder used to
select word line

❑ Column decoder used to
select one or more columns
for input/output of data

 5

EE141

Multi-ported memory

EE141

Multi-ported Memory
❑ Motivation:

▪ Consider CPU core register file:
– 1 read or write per cycle limits

processor performance.
– Complicates pipelining. Difficult for

different instructions to
simultaneously read or write regfile.

– Common arrangement in pipelined
CPUs is 2 read ports and 1 write
port.

data
buffer

disk or network interface

CPU
– I/O data buffering:

Aa
Dina
WEa

Ab
Dinb

WEb

Dual-port
Memory

Douta

Doutb

• dual-porting allows
both sides to
simultaneously
access memory at
full bandwidth.

 7

EE141
 8

Dual-ported Memory Internals
❑ Add decoder, another set of

read/write logic, bits lines, word
lines:

deca decb
cell

array

r/w logic

r/w logic

data ports
address

ports

• Example cell: SRAM

• Repeat everything but cross-coupled
inverters.

• This scheme extends up to a couple
more ports, then need to add
additional transistors.

b2 b2b1 b1

WL2

WL1

EE141

Cascading Memory
Blocks

EE141

Cascading Memory-Blocks
How to make larger memory blocks out of smaller ones.

Increasing the width. Example: given 1Kx8, want 1Kx16

 10

EE141

Cascading Memory-Blocks
How to make larger memory blocks out of smaller ones.

Increasing the depth. Example: given 1Kx8, want 2Kx8

 11

EE141

Adding Ports to Primitive Memory Blocks
Adding a read port to a simple dual port (SDP) memory.

Example: given 1Kx8 SDP, want 1 write & 2 read ports.

 12

EE141

Adding Ports to Primitive Memory Blocks
How to add a write port to a simple dual port memory.
Example: given 1Kx8 SDP, want 1 read & 2 write ports.

 13

EE141

FIFOs

EE141

First-in-first-out (FIFO) Memory
❑ Used to implement queues.
❑ These find common use in computers

and communication circuits.
❑ Generally, used to “decouple” actions

of producer and consumer:

• Producer can perform many writes
without consumer performing any
reads (or vis versa). However,
because of finite buffer size, on
average, need equal number of
reads and writes.

• Typical uses:
– interfacing I/O devices. Example

network interface. Data bursts
from network, then processor
bursts to memory buffer (or
reads one word at a time from
interface). Operations not
synchronized.

– Example: Audio output.
Processor produces output
samples in bursts (during
process swap-in time). Audio
DAC clocks it out at constant
sample rate.

stating state

after write

after read

abc

abcd

bcd

EE141

FIFO Interfaces

❑ After write or read operation, FULL and
EMPTY indicate status of buffer.

❑ Used by external logic to control own
reading from or writing to the buffer.

❑ FIFO resets to EMPTY state.
❑ HALF FULL (or other indicator of partial

fullness) is optional.

• Address pointers are used internally to
keep next write position and next read
position into a dual-port memory.

• If pointers equal after write ⇒ FULL:

• If pointers equal after read ⇒ EMPTY:

DIN

DOUT

WE

RE
EMPTY

FULL
HALF FULL

RST CLK

FIFO
write ptr

read ptr

write ptr read ptr

write ptr read ptr

Note: pointer incrementing is done “mod size-of-buffer”

EE141

Xilinx Virtex5 FIFOs
❑ Virtex5 BlockRAMS include dedicated circuits for FIFOs.
❑ Details in User Guide (ug190).
❑ Takes advantage of separate dual ports and independent ports clocks.

EE141

Memory on FPGAs

EE141

Virtex-5 LX110T
memory blocks.

Block RAMs
in four
columns.

Distributed RAM
using LUTs
among the CLBs.

 19

EE141

A SLICEM 6-LUT ...

Normal
6-LUT
inputs.

Normal
5/6-LUT
outputs.

Memory
write

address

Memory data input

Memory
data input.

Control output for
chaining LUTs to

make larger memories.

A 1.1 Mb distributed RAM can be made if
all SLICEMs of an LX110T are used as RAM.

Synchronous write / asychronous read

 20

EE141

Page

SLICEL vs SLICEM ...
SLICEMSLICEL

SLICEM adds memory
features to LUTs, + muxes.

!2132

EE141

Example Distributed RAM (LUT RAM)
Example configuration:

Single-port 256b x 1,
registered output.

 22

EE141

Distributed RAM Primitives

All are built from a single slice or less.

Remember, though, that the SLICEM LUT
is naturally only 1 read and 1 write port.

 23

EE141

Distributed RAM Timing

 24

EE141

Block RAM Overview
❑ 36K bits of data total, can be configured as:

▪ 2 independent 18Kb RAMs, or one 36Kb RAM.
❑ Each 36Kb block RAM can be configured as:

▪ 64Kx1 (when cascaded with an adjacent 36Kb block
RAM), 32Kx1, 16Kx2, 8Kx4, 4Kx9, 2Kx18, or 1Kx36
memory.

❑ Each 18Kb block RAM can be configured as:
▪ 16Kx1, 8Kx2, 4Kx4, 2Kx9, or 1Kx18 memory.

❑ Write and Read are synchronous operations.
❑ The two ports are symmetrical and totally

independent (can have different clocks),
sharing only the stored data.

❑ Each port can be configured in one of the
available widths, independent of the other port.
The read port width can be different from the
write port width for each port.

❑ The memory content can be initialized or
cleared by the configuration bitstream.

 25

EE141

Block RAM Timing

❑ Optional output register, would delay appearance of output data by one
cycle.

❑ Maximum clock rate, roughly 400MHz.

 26

EE141

State-of-the-Art - Xilinx FPGAs

 27

Virtex Ultra-scale

EE141

Ultra-RAM Blocks

 28

EE141

Memory Synthesis

EE141
 30

Verilog RAM Specification
//
// Single-Port RAM with Asynchronous Read
//
module ramBlock (clk, we, a, di, do);
 input clk;
 input we; // write enable
 input [5:0] a; // address
 input [7:0] di; // data in
 output [7:0] do; // data out
 reg [7:0] ram [1048575:0]; // 8x1Meg
 always @(posedge clk) begin // Synch write
 if (we)
 ram[a] <= di;
 assign do = ram[a]; // Asynch read
endmodule

 What do the synthesis tools do with this?

EE141

Verilog Synthesis Notes (FPGAs)

❑ Block RAMS and LUT RAMS all exist as primitive library elements.
However, it is much more convenient to use inference.

❑ Depending on how you write your Verilog, you will get either a
collection of block RAMs, a collection of LUT RAMs, or a collection
of flip-flops.

❑ The synthesizer uses size, and read style (synch versus asynch) to
determine the best primitive type to use.

❑ It is possible to force mapping to a particular primitive by using
synthesis directives. Ex: (* ram_style = "distributed" *) reg myReg;

❑ The synthesizer has limited capabilities (eg., it can combine
primitives for more depth and width, but is limited on porting
options). Be careful, as you might not get what you want.

❑ See XST User Guide for examples.
❑ CORE generator memory block has an extensive set of parameters

for explicitly instantiated RAM blocks.

 31

EE141

Processor Design Considerations 
 (FPGA Version)
❑ Register File: Consider distributed RAM (LUT RAM)

▪ Size is close to what is needed: distributed RAM primitive configurations
are 32 or 64 bits deep. Extra width is easily achieved by parallel
arrangements.

▪ LUT-RAM configurations offer multi-porting options - useful for register
files.

▪ Asynchronous read, might be useful by providing flexibility on where to
put register read in the pipeline.

❑ Instruction / Data Caches : Consider Block RAM
▪ Higher density, lower cost for large number of bits
▪ A single 36kbit Block RAM implements 1K 32-bit words.
▪ Configuration stream based initialization, permits a simple “boot strap”

procedure.

 32

EE141

Verilog Synthesis Notes (ASICs)

❑ Depending on how you write your Verilog, you will get either a
collection of flip-flops or latches.

❑ Dense RAM arrays are not inferred and must be explicitly
instantiated.

❑ Fab house supplied design kits and cell libraries typically come with
parameterized RAM block generators (or, at least, a set of
predesigned blocks).

 33

EE141
 34

EE141

Processor Design Considerations 
 (ASIC Version)

❑ Register File: use synthesized RAM
▪ At this size (1k bits) synthesized is competitive with dense RAM block
▪ Latch-based instead of flip-flop-based will save on area.
▪ Asynchronous read, might be useful by providing flexibility on where to

put register read in the pipeline.
❑ Instruction / Data Caches : Use generated dense Block

RAM
▪ Higher density, lower cost for large number of bits
▪ We will provide for you

 35

EE141

Inferring RAMs in Verilog (FPGA)
 // 64X1 RAM implementation using distributed RAM

module ram64X1 (clk, we, d, addr, q);
input clk, we, d;
input [5:0] addr;
output q;

 reg [63:0] temp;
 always @ (posedge clk)
 if(we)
 temp[addr] <= d;
 assign q = temp[addr];

 endmodule

Asynchronous read infers
LUT RAM

Verilog reg array used with
“always @ (posedge ... infers

memory array.

 36

EE141

Dual-read-port LUT RAM (FPGA)
//
// Multiple-Port RAM Descriptions
//
module v_rams_17 (clk, we, wa, ra1, ra2, di, do1, do2);
 input clk;
 input we;
 input [5:0] wa;
 input [5:0] ra1;
 input [5:0] ra2;
 input [15:0] di;
 output [15:0] do1;
 output [15:0] do2;
 reg [15:0] ram [63:0];
 always @(posedge clk)
 begin
 if (we)
 ram[wa] <= di;
 end
 assign do1 = ram[ra1];
 assign do2 = ram[ra2];
endmodule

Multiple reference to
same array.

 37

EE141

Block RAM Inference (FPGA)
//
// Single-Port RAM with Synchronous Read
//
module v_rams_07 (clk, we, a, di, do);
 input clk;
 input we;
 input [5:0] a;
 input [15:0] di;
 output [15:0] do;
 reg [15:0] ram [63:0];
 reg [5:0] read_a;
 always @(posedge clk) begin
 if (we)
 ram[a] <= di;
 read_a <= a;
 end
 assign do = ram[read_a];
endmodule

Synchronous read (registered
read address) infers Block

RAM

 38

EE141

FPGA Block RAM initialization (FPGA)
module RAMB4_S4 (data_out, ADDR, data_in, CLK, WE);
 output[3:0] data_out;
 input [2:0] ADDR;
 input [3:0] data_in;
 input CLK, WE;
 reg [3:0] mem [7:0];
 reg [3:0] read_addr;

 initial
 begin
 $readmemb("data.dat", mem);
 end

 always@(posedge CLK)
 read_addr <= ADDR;

 assign data_out = mem[read_addr];

 always @(posedge CLK)
 if (WE) mem[ADDR] = data_in;

 endmodule

“data.dat” contains initial RAM
contents, it gets put into the bitfile
and loaded at configuration time.
(Remake bits to change contents)

 39

EE141

Dual-Port Block RAM (FPGA)
module test (data0,data1,waddr0,waddr1,we0,we1,clk0, clk1, q0, q1);

 parameter d_width = 8; parameter addr_width = 8; parameter mem_depth = 256;

 input [d_width-1:0] data0, data1;
 input [addr_width-1:0] waddr0, waddr1;
 input we0, we1, clk0, clk1;

 reg [d_width-1:0] mem [mem_depth-1:0]
 reg [addr_width-1:0] reg_waddr0, reg_waddr1;
 output [d_width-1:0] q0, q1;

 assign q0 = mem[reg_waddr0];
 assign q1 = mem[reg_waddr1];

 always @(posedge clk0)
 begin
 if (we0)
 mem[waddr0] <= data0;
 reg_waddr0 <= waddr0;
 end

 always @(posedge clk1)
 begin
 if (we1)
 mem[waddr1] <= data1;
 reg_waddr1 <= waddr1;
 end

 endmodule

 40

EE141

Caches

EE141

1977: DRAM faster than microprocessors
 Apple II (1977)

Steve
WozniakSteve Jobs

 CPU: 1000 ns

 DRAM: 400 ns

 42

EE141

1980-2003, CPU speed outpaced DRAM ...

10

DRAM

CPU

Performance
(1/latency)

100

1000

1980 20001990

Year

Gap grew 50% per
year

Q. How do architects address this gap?
A. Put smaller, faster “cache” memories between CPU and

DRAM.
Create a “memory hierarchy”.

10000
The

power
wall

2005

CPU
60% per yr
2X in 1.5 yrs

DRAM
9% per yr
2X in 10 yrs

 43

EE141

Nahalem Die Photo (i7, i5)

 44

❑ Per core:
▪ 32KB L1 I-Cache (4-way set associative)
▪ 32KB L1 D-Cache (8-way set associative)
▪ 256KB unified L2 (8-way SA, 64B blocks)
▪ Common L3 8MB cache

❑ Common L3 8MB cache

L1

L2

EE141

EE141

CPU-Cache Interaction 
(5-stage pipeline)

PC addr inst

Primary	
Instruction	
Cache

0x4
Add

IR

D

bubble

hit?
PCen

Decode,	
Register	
Fetch

wdata
R

addr

wdata

rdata
Primary	
Data		
Cache

we
A

B

YYALU

MD1 MD2

Cache	Refill	Data	from	Lower	Levels	of	
Memory	Hierarchy

hit?

Stall	entire	
CPU	on	data	
cache	miss

To	Memory	Control

M
E

EE141

❑ Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced,

it will tend to be referenced again soon.
– Spatial Locality (Locality in Space): If an item is referenced,

items whose addresses are close by tend to be referenced
soon.

❑ By taking advantage of the principle of locality:
– Present the user with as much memory as is available in the

cheapest technology.
– Provide access at the speed offered by the fastest

technology.
❑ DRAM is slow but cheap and dense:

– Good choice for presenting the user with a BIG memory
system

❑ SRAM is fast but expensive and not very dense:
– Good choice for providing the user FAST access time.

Review from 61C

EE141

For a 2N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9
Block address

Example: 1 KB Direct Mapped Cache with 32 B Blocks

EE141

Fully Associative Cache
– Forget about the Cache Index
– Compare the Cache Tags of all cache entries in parallel
– Example: Block Size = 32 B blocks, we need N 27-bit

comparators
By definition: Conflict Miss = 0 for a fully associative cache

:

 Cache Data
Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select
Ex: 0x01

=

=
=

=

=

Extreme Example: Fully Associative

EE141

N-way set associative: N entries for each Cache Index
– N direct mapped caches operates in parallel

Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– The two tags in the set are compared to the input in parallel
– Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Set Associative Cache

EE141

N-way Set Associative Cache versus Direct Mapped Cache:
– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss decision and set selection

In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
– Possible to assume a hit and continue. Recover later if miss.

Disadvantage of Set Associative Cache

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

