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❑ Multi-ported RAM 
❑ Combining Memory 

blocks 
❑ FIFOs 
❑ FPGA memory blocks 
❑ Memory block synthesis 
❑ Caches
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Memory Blocks
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❑ Extra circuitry and timed 
control signals needed 
▪ Periphery circuits add a 

“fixed” area overhead 
▪ Row select, sensing, 

precharge must be 
sequenced, based on 
input clock signal 

▪ Read operation needs a 
clock: “synchronous 
read”
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SRAM Block
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Memory Architecture Overview
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❑ Word lines used to select a 
row for reading or writing 

❑ Bit lines carry data to/from 
periphery 

❑ Core aspect ratio keep 
close to 1 to help balance 
delay on word line versus 
bit line 

❑ Address bits are divided 
between the two decoders 

❑ Row decoder used to 
select word line 

❑ Column decoder used to 
select one or more columns 
for input/output of data
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Multi-ported memory
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Multi-ported Memory
❑ Motivation: 

▪ Consider CPU core register file: 
– 1 read or write per cycle limits 

processor performance. 
– Complicates pipelining.  Difficult for 

different instructions to 
simultaneously read or write regfile. 

– Common arrangement in pipelined 
CPUs is 2 read ports and 1 write 
port.

data 
buffer

disk or network interface

CPU
– I/O data buffering: 

Aa 
Dina 
WEa 

Ab 
Dinb 

WEb

Dual-port 
Memory

Douta 

Doutb

• dual-porting allows 
both sides to 
simultaneously 
access memory at 
full bandwidth.  
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Dual-ported Memory Internals
❑ Add decoder, another set of 

read/write logic, bits lines, word 
lines:

deca decb
cell 

array

r/w logic

r/w logic

data ports
address 

ports

• Example cell: SRAM 

• Repeat everything but cross-coupled 
inverters. 

• This scheme extends up to a couple 
more ports, then need to add 
additional transistors.

b2 b2b1 b1

WL2

WL1
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Cascading Memory 
Blocks



EE141

Cascading Memory-Blocks
How to make larger memory blocks out of smaller ones.

Increasing the width.  Example: given 1Kx8, want 1Kx16
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Cascading Memory-Blocks
How to make larger memory blocks out of smaller ones.

Increasing the depth.  Example: given 1Kx8, want 2Kx8
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Adding Ports to Primitive Memory Blocks
Adding a read port to a simple dual port (SDP) memory.

Example: given 1Kx8 SDP, want 1 write & 2 read ports.
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Adding Ports to Primitive Memory Blocks
How to add a write port to a simple dual port memory.
Example: given 1Kx8 SDP, want 1 read & 2 write ports.
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FIFOs
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First-in-first-out (FIFO) Memory
❑ Used to implement queues.   
❑ These find common use in computers 

and communication circuits. 
❑ Generally, used to “decouple” actions 

of producer and consumer:

• Producer can perform many writes 
without consumer performing any 
reads (or vis versa).   However, 
because of finite buffer size, on 
average, need equal number of 
reads and writes. 

• Typical uses:  
– interfacing I/O devices.  Example 

network interface.  Data bursts 
from network, then processor 
bursts to memory buffer (or 
reads one word at a time from 
interface).  Operations not 
synchronized. 

– Example: Audio output.  
Processor produces output 
samples in bursts (during 
process swap-in time).  Audio 
DAC clocks it out at constant 
sample rate.

stating state

after write

after read

abc

abcd

bcd
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FIFO Interfaces

❑ After write or read operation, FULL and 
EMPTY indicate status of buffer. 

❑ Used by external logic to control own 
reading from or writing to the buffer. 

❑ FIFO resets to EMPTY state. 
❑ HALF FULL (or other indicator of partial 

fullness) is optional.

• Address pointers are used internally to 
keep next write position and next read 
position into a dual-port memory. 

• If pointers equal after write ⇒ FULL: 

• If pointers equal after read ⇒ EMPTY:

DIN

DOUT

WE

RE
EMPTY

FULL
HALF FULL

RST CLK

FIFO
write ptr

read ptr

write ptr read ptr

write ptr read ptr

Note: pointer incrementing is done “mod size-of-buffer”
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Xilinx Virtex5 FIFOs
❑ Virtex5 BlockRAMS include dedicated circuits for FIFOs. 
❑ Details in User Guide (ug190). 
❑ Takes advantage of separate dual ports and independent ports clocks.
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Memory on FPGAs
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Virtex-5 LX110T 
memory blocks. 

Block RAMs 
in four 
columns.

Distributed RAM 
using LUTs 
among the CLBs.
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A SLICEM 6-LUT ...

Normal  
6-LUT 
inputs.

Normal  
5/6-LUT 
outputs.

Memory 
write 

address

Memory data input

Memory 
data input.

Control output for 
chaining LUTs to  

make larger memories.

A 1.1 Mb distributed RAM can be made if  
all SLICEMs of an LX110T are used as RAM. 

Synchronous  write  /  asychronous read
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Page 

SLICEL vs SLICEM ...
SLICEMSLICEL

SLICEM adds memory 
features to LUTs, + muxes.

!2132
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Example Distributed RAM (LUT RAM) 
Example configuration:  

Single-port 256b x 1, 
registered output.
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Distributed RAM Primitives

All are built from a single slice or less.

Remember, though, that the SLICEM LUT 
is naturally only 1 read and 1 write port.
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Distributed RAM Timing
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Block RAM Overview
❑ 36K bits of data total, can be configured as:  

▪ 2 independent 18Kb RAMs, or one 36Kb RAM.  
❑ Each 36Kb block RAM can be configured as:  

▪ 64Kx1 (when cascaded with an adjacent 36Kb block 
RAM), 32Kx1, 16Kx2, 8Kx4, 4Kx9, 2Kx18, or 1Kx36 
memory.  

❑ Each 18Kb block RAM can be configured as: 
▪ 16Kx1, 8Kx2, 4Kx4, 2Kx9, or 1Kx18 memory.  

❑ Write and Read are synchronous operations. 
❑ The two ports are symmetrical and totally 

independent (can have different clocks), 
sharing only the stored data.  

❑ Each port can be configured in one of the 
available widths, independent of the other port.  
The read port width can be different from the 
write port width for each port.  

❑ The memory content can be initialized or 
cleared by the configuration bitstream. 

 25



EE141

Block RAM Timing

❑ Optional output register, would delay appearance of output data by one 
cycle. 

❑ Maximum clock rate, roughly 400MHz.
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State-of-the-Art - Xilinx FPGAs
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Virtex Ultra-scale
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Ultra-RAM Blocks
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Memory Synthesis
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Verilog RAM Specification
// 
// Single-Port RAM with Asynchronous Read 
// 
module ramBlock (clk, we, a, di, do); 
    input  clk;      
    input  we;           // write enable
    input  [5:0] a;      // address
    input  [7:0] di;    // data in
    output [7:0] do;    // data out
    reg    [7:0] ram [1048575:0];  // 8x1Meg
    always @(posedge clk) begin    // Synch write
        if (we) 
            ram[a] <= di; 
    assign do = ram[a];            // Asynch read
endmodule 
   

      What do the synthesis tools do with this?
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Verilog Synthesis Notes (FPGAs)

❑ Block RAMS and LUT RAMS all exist as primitive library elements.  
However, it is much more convenient to use inference. 

❑ Depending on how you write your Verilog, you will get either a 
collection of block RAMs, a collection of LUT RAMs, or a collection 
of flip-flops. 

❑ The synthesizer uses size, and read style (synch versus asynch) to 
determine the best primitive type to use.   

❑ It is possible to force mapping to a particular primitive by using 
synthesis directives.  Ex: (* ram_style = "distributed" *) reg myReg; 

❑ The synthesizer has limited capabilities (eg., it can combine 
primitives for more depth and width, but is limited on porting 
options).  Be careful, as you might not get what you want. 

❑ See XST User Guide for examples. 
❑ CORE generator memory block has an extensive set of parameters 

for explicitly instantiated RAM blocks.
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Processor Design Considerations 
 (FPGA Version)
❑ Register File: Consider distributed RAM (LUT RAM) 

▪ Size is close to what is needed:  distributed RAM primitive configurations 
are 32 or 64 bits deep.  Extra width is easily achieved by parallel 
arrangements. 

▪ LUT-RAM configurations offer multi-porting options - useful for register 
files. 

▪ Asynchronous read, might be useful by providing flexibility on where to 
put register read in the pipeline. 

❑ Instruction / Data Caches : Consider Block RAM 
▪ Higher density, lower cost for large number of bits 
▪ A single 36kbit Block RAM implements 1K 32-bit words. 
▪ Configuration stream based initialization, permits a simple “boot strap” 

procedure.
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Verilog Synthesis Notes (ASICs)

❑ Depending on how you write your Verilog, you will get either a 
collection of flip-flops or latches. 

❑ Dense RAM arrays are not inferred and must be explicitly 
instantiated. 

❑ Fab house supplied design kits and cell libraries typically come with 
parameterized RAM block generators (or, at least, a set of 
predesigned blocks).
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Processor Design Considerations 
 (ASIC Version)

❑ Register File: use synthesized RAM 
▪ At this size (1k bits) synthesized is competitive with dense RAM block 
▪ Latch-based instead of flip-flop-based will save on area. 
▪ Asynchronous read, might be useful by providing flexibility on where to 

put register read in the pipeline. 
❑ Instruction / Data Caches : Use generated dense Block 

RAM 
▪ Higher density, lower cost for large number of bits 
▪ We will provide for you
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Inferring RAMs in Verilog (FPGA)
 // 64X1 RAM implementation using distributed RAM

module ram64X1 (clk, we, d, addr, q);
input clk, we, d;
input [5:0] addr;
output q;

   reg [63:0] temp;
   always @ (posedge clk)
     if(we)
       temp[addr] <= d;
   assign q = temp[addr];

   endmodule

Asynchronous read infers 
LUT RAM

Verilog reg array used with 
“always @ (posedge ... infers 

memory array.
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Dual-read-port LUT RAM (FPGA)
// 
// Multiple-Port RAM Descriptions 
// 
module v_rams_17 (clk, we, wa, ra1, ra2, di, do1, do2); 
    input  clk; 
    input  we; 
    input  [5:0] wa; 
    input  [5:0] ra1; 
    input  [5:0] ra2; 
    input  [15:0] di; 
    output [15:0] do1; 
    output [15:0] do2; 
    reg    [15:0] ram [63:0]; 
    always @(posedge clk) 
    begin 
        if (we) 
            ram[wa] <= di; 
    end 
    assign do1 = ram[ra1]; 
    assign do2 = ram[ra2]; 
endmodule

Multiple reference to 
same array.
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Block RAM Inference (FPGA)
// 
// Single-Port RAM with Synchronous Read 
// 
module v_rams_07 (clk, we, a, di, do); 
    input  clk; 
    input  we; 
    input  [5:0] a; 
    input  [15:0] di; 
    output [15:0] do; 
    reg    [15:0] ram [63:0]; 
    reg    [5:0] read_a; 
    always @(posedge clk) begin 
        if (we) 
            ram[a] <= di; 
        read_a <= a;
    end 
    assign do = ram[read_a]; 
endmodule 

Synchronous read (registered 
read address) infers Block 

RAM
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FPGA Block RAM initialization (FPGA)
module RAMB4_S4 (data_out, ADDR, data_in, CLK, WE);
   output[3:0] data_out;
   input [2:0] ADDR;
   input [3:0] data_in;
   input CLK, WE;
   reg [3:0] mem [7:0];
   reg [3:0] read_addr;

   initial
     begin
       $readmemb("data.dat", mem);
     end
   
   always@(posedge CLK)
     read_addr <= ADDR;

   assign data_out = mem[read_addr];

   always @(posedge CLK)
     if (WE) mem[ADDR] = data_in;

   endmodule

“data.dat” contains initial RAM 
contents, it gets put into the bitfile 
and loaded at configuration time.  
(Remake bits to change contents)
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Dual-Port Block RAM (FPGA)
module test (data0,data1,waddr0,waddr1,we0,we1,clk0, clk1, q0, q1);

   parameter d_width = 8;  parameter addr_width = 8; parameter mem_depth = 256;

   input [d_width-1:0] data0, data1;
   input [addr_width-1:0] waddr0, waddr1;
   input we0, we1, clk0, clk1;

   reg [d_width-1:0] mem [mem_depth-1:0]
   reg [addr_width-1:0] reg_waddr0, reg_waddr1;
   output [d_width-1:0] q0, q1;

   assign q0 = mem[reg_waddr0];
   assign q1 = mem[reg_waddr1];

   always @(posedge clk0)
     begin
       if (we0)
         mem[waddr0] <= data0;
       reg_waddr0 <= waddr0;
     end

   always @(posedge clk1)
     begin
       if (we1)
         mem[waddr1] <= data1;
       reg_waddr1 <= waddr1;
     end

   endmodule
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Caches
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1977: DRAM faster than microprocessors
 Apple II (1977)

Steve  
WozniakSteve Jobs

 CPU: 1000 ns

 DRAM: 400 ns
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1980-2003, CPU speed outpaced DRAM ...

10

DRAM

CPU

Performance 
(1/latency)

100

1000

1980 20001990

Year

Gap grew 50% per 
year

Q. How do architects address this gap? 
A. Put smaller, faster “cache” memories between CPU and 

DRAM.  
Create a “memory hierarchy”.

10000
The  

power  
wall

2005

CPU 
60% per yr 
2X in 1.5 yrs

DRAM 
9% per yr 
2X in 10 yrs
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Nahalem Die Photo (i7, i5)
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❑ Per core: 
▪ 32KB L1 I-Cache (4-way set associative) 
▪ 32KB L1 D-Cache (8-way set associative) 
▪ 256KB unified L2 (8-way SA, 64B blocks) 
▪ Common L3 8MB cache 

❑ Common L3 8MB cache

L1

L2
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CPU-Cache Interaction 
(5-stage pipeline)

PC addr inst

Primary	
Instruction	
Cache

0x4
Add

IR

D

bubble

hit?
PCen

Decode,	
Register	
Fetch

wdata
R

addr

wdata

rdata
Primary	
Data		
Cache

we
A

B

YYALU

MD1 MD2

Cache	Refill	Data	from	Lower	Levels	of	
Memory	Hierarchy

hit?

Stall	entire	
CPU	on	data	
cache	miss

To	Memory	Control

M
E
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❑ Two Different Types of Locality: 
– Temporal Locality (Locality in Time): If an item is referenced, 

it will tend to be referenced again soon. 
– Spatial Locality (Locality in Space): If an item is referenced, 

items whose addresses are close by tend to be referenced 
soon. 

❑ By taking advantage of the principle of locality: 
– Present the user with as much memory as is available in the 

cheapest technology. 
– Provide access at the speed offered by the fastest 

technology. 
❑ DRAM is slow but cheap and dense: 

– Good choice for presenting the user with a BIG memory 
system 

❑ SRAM is fast but expensive and not very dense: 
– Good choice for providing the user FAST access time.

Review from  61C
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For a 2N byte cache: 
– The uppermost (32 - N) bits are always the Cache Tag 
– The lowest M bits are the Byte Select (Block Size = 2M)

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part 
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9
Block address

Example: 1 KB Direct Mapped Cache with 32 B Blocks
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Fully Associative Cache 
– Forget about the Cache Index 
– Compare the Cache Tags of  all cache entries in parallel 
– Example: Block Size = 32 B blocks, we need N 27-bit 

comparators 
By definition: Conflict Miss = 0 for a fully associative cache

:

 Cache Data
Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select
Ex: 0x01

=

=
=

=

=

Extreme Example: Fully Associative



EE141

N-way set associative: N entries for each Cache Index 
– N direct mapped caches operates in parallel 

Example: Two-way set associative cache 
– Cache Index selects a “set” from the cache 
– The two tags in the set are compared to the input in parallel 
– Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Set Associative Cache
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N-way Set Associative Cache versus Direct Mapped Cache: 
– N comparators vs. 1 
– Extra MUX delay for the data 
– Data comes AFTER Hit/Miss decision and set selection 

In a direct mapped cache, Cache Block is available BEFORE Hit/Miss: 
– Possible to assume a hit and continue.  Recover later if miss.

Disadvantage of Set Associative Cache

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit


