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Motivation
• 90/10 rule: 

– Often 90 percent of the program runtime and energy is consumed 
by 10 percent of the code (inner-loops). 

– Only small portions of an application become the performance 
bottlenecks. 

– Usually, these portions of code are data processing intensive with 
relatively fixed dataflow patterns (little control): cryptography, 
graphics, video, communications signal processing, networking, ... 

– The other 90 percent of the code not performance critical: UI, 
control, glue, exceptional cases, ...

!3

 Hybrid processor-core hardware accelerator
– Hardware accelerator/economizer implements specialized circuits for 

inner-loops. 
– Processor packs the noncritical portions (90%), 10% of the computation 

into minimal space.



Energy	Efficiency	of	CPU	versus	
ASIC	versus	FPGA
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Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, 
Alex Solomatnikov, Benjamin C. Lee, Stephen Richardson, 
Christos Kozyrakis, and Mark Horowitz. Understanding sources 
of inefficiency in general-purpose chips. SIGARCH Comput. 
Archit. News, 38:37–47, June 2010.

CPUASIC

500x

∴ FPGA : CPU = 70x

Ian Kuon and Jonathan Rose. Measuring the gap between 
fpgas and asics. In Proceedings of the 2006 ACM/SIGDA 14th 
international symposium on Field programmable gate arrays, 
FPGA ’06, pages 21–30, New York, NY, USA, 2006. ACM FPGA ASIC

7x

Similar story for performance efficiency
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Why are accelerators more efficient 
than processors?

• Performance/cost or Energy/op 
1. exploit problem specific parallelism, 

at thread and instructions level 
2. custom “instructions” match the set 

of operations needed for the 
algorithm (replace multiple 
instructions with one), custom word 
width arithmetic, etc. 

3. remove overhead of instruction 
storage and fetch, ALU 
multiplexing

!5

What about FPGAs?
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“System on Chip” Example
• Three ARM 

cores, plus 
lots of 
accelerators 

• Targets smart 
phones

!6
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Processors in FPGAs
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Xilinx ZYNQ

Altera: Dual-Core ARM Cortex-A9 MPCore Processor
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Soft Processors

Intel/Altera: Nios

Xilinx: Microblaze
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Custom Hardware in the Pipeline

!9
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Custom Instructions

!10

• Example: Tensilca 
– Special language TIE 

is used for defining 
special function 
units 

– Custom architecture 
automatically 
compiled 

– Compiler support 
challenging
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Tightly Coupled Co-processor

!11

MicroBlaze: Fast Simplex Links (FSL) 

Similar to MIPS coprocessor model 
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MicroBlaze Fast Simplex Links

!12
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Memory Mapped Accelerators

• Memory mapped control/
data registers 

!13

CPU accelerator

Memory System

Address
Data

CPU

accelerator

Memory System

Dcache

Peripheral Bus (OPB, PCIe)Peripheral Bus (AXI, PCIe)

CPU

accelerator

Memory System

Dcache

Peripheral Bus (OPB, PCIe)

Memory 
block

Peripheral Bus (AXI, PCIe)
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CPU/Accelerator Shared Memory

!14

CPU
accelerator

Memory Arbiter

Memory System

Dcache

CPU
accelerator

Memory System

Dcache

• Processor instructs accelerator to independently access memory and perform 
work 

• How does processor synchronize with accelerator (how does it know when it is 
done)? 

• Data Cache on CPU creates “coherency” issue 
• What about a cache in the accelerator?
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RISCV-151 Video Subsystem

!15

• Gives software ability to display information on screen. 
• Also, similar to standard graphics cards: 

• 2D Graphics acceleration to offload work from processor

01000100001
10010000100
00111100010
11010101000

Instruction
Memory

01000100001
10010000100
00111100010
11010101000

Data
Memory

MIPS CPUSerial
Interface

Video
Interface

2-D 
Graphics

Accelerator

FPGA Chip

XUPV5 BoardXilinx PYNQ Board

RISC-V CPU
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“Framebuffer” HW/SW Interface
• A range of memory addresses correspond to the display. 
• CPU writes (using sw instruction) pixel values to change display. 
• No synchronization required.  Independent process reads pixels from 

memory and sends them to the display interface at the required rate.

0

0xFFFFFFFF
CPU address map

!16

Ex: 1024 pixels/line X 768 lines

0x80000000

0x803FFFFC Frame 
buffer Display Origin: 

Increasing X 
values to the 
right.  Increasing 
Y values down.

(0,0)

(1023, 767)
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Framebuffer Implementation
• Framebuffer like a simple dual-ported memory.  

Two independent processes access framebuffer:

!17

CPU writes pixel 
locations.  Could be 

in random order, e.g. 
drawing an object, 

or sequentially, e.g. 
clearing the screen.

Video Interface 
continuously reads 
pixel locations in 
scan-line order and 
sends to physical 
display.

• How big is this memory and how do we implement 
it? For example: 
    1024 x 768 pixels/frame  x 24 bits/pixel 

Frame 
buffer
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Memory Mapped Framebuffer

0

0xFFFFFFFF
MIPS address map

!18

1024 pixels/line X 768 lines

0x80000000

0x8023FFFD Frame 
buffer

Display Origin: 
Increasing X 
values to the 
right.  Increasing 
Y values down.

(0,0)

(1023, 767)

1024 * 768 = 786,432 pixels
We choose 24 bits/pixel

{ Red[7:0] ; Green[7:0] ; Blue[7:0] }
786,432 * 3 = 2,359,296 Bytes

• Total memory bandwidth needed to support frame 
buffer?
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Frame Buffer Physical Interface

!19

More generally, how does software 
interface to I/O devices?

CPU

Video 
Interface

   DRAM Controller / Arb

FPGA

Processor Side: provides a 
memory mapped programming 
interface to video display.

Video Interface Block: 
accepts pixel values from 
FB, streams pixels values 
and control signals to 
physical device.  

DRAM “Arb”: 
arbitrates among 
multiple DRAM users.
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Line Drawing Acceleration

!20

0

0  1  2  3  4  5  6  7  8  9  10  11  12
1
2
3
4
5
6
7

(x0,y0) (x1,y1)From to
Line equation defines 
all the points:

For each x value, could compute y, with: 
then round to the nearest integer y value.

Slope can be precomputed, but still requires floating 
point * and + in the loop:  relatively slow or expensive!
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Bresenham Line Drawing Algorithm

• Computers of the day, slow at 
complex arithmetic operations, 
such as multiply, especially on 
floating point numbers. 

• Bresenham’s algorithm works 
with integers and without 
multiply or divide. 

• Simplicity makes it appropriate 
for inexpensive hardware 
implementation. 

• With extension, can be used for 
drawing circles. !21

Developed by Jack E. Bresenham in 1962 at IBM.  
"I was working in the computation lab at IBM's San Jose 
development lab. A Calcomp plotter had been attached to 
an IBM 1401 via the 1407 typewriter console. ...

http://en.wikipedia.org/wiki/Jack_E._Bresenham
http://en.wikipedia.org/wiki/International_Business_Machines
http://en.wikipedia.org/wiki/Calcomp_plotter
http://en.wikipedia.org/wiki/IBM_1401


Spring 2019 EECS151 Page 

Line Drawing Algorithm

!22

This version assumes: x0 < x1,  y0 < y1,  slope =< 45 degrees
function line(x0, x1, y0, y1)
   int deltax := x1 - x0
   int deltay := y1 - y0
   int error := deltax / 2
   int y := y0
   for x from x0 to x1
      plot(x,y)
      error := error - deltay
      if error < 0 then
         y := y + 1
         error := error + deltax

Note:  error starts at deltax/2 and gets decremented 
by deltay for each x. y gets incremented when error 
goes negative, therefore y gets incremented at a rate 
proportional to deltax/deltay. 

0  1  2  3  4  5  6  7  8  9  10  11  12
1
2
3
4
5
6
7
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Line Drawing, Examples

!23

0  1  2  3  4  5  6  7  8  9  10  11  12
1
2
3
4
5
6
7

deltay = 1 (very low slope).   
y only gets incremented 
once (halfway between x0 
and x1)

0  1  2  3  4  5  6  7  8  9  10  11  12
1
2
3
4
5
6
7

deltay = deltax (45 degrees, 
max slope).  y gets 
incremented for every x 
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Line Drawing Example

!24

0  1  2  3  4  5  6  7  8  9  10  11  12
1
2
3
4
5
6
7

function line(x0, x1, y0, y1)
   int deltax := x1 - x0
   int deltay := y1 - y0
   int error := deltax / 2
   int y := y0
   for x from x0 to x1
      plot(x,y)
      error := error - deltay
      if error < 0 then
         y := y + 1
         error := error + deltax

deltax = 10, deltay = 4, error = 10/2 = 5, y = 1 

(1,1) -> (11,5)

x = 1:  plot(1,1) 
error = 5 - 4 = 1

x = 2: plot(2,1) 
error = 1 - 4 = -3 
   y = 1 + 1 = 2 
   error = -3 + 10 = 7

x = 3: plot(3,2) 
error = 7 - 4 = 3

x = 4: plot(4,2) 
error = 3 - 4 = -1 
   y = 2 + 1 = 3 
   error = -1 + 10 = 9

x = 5: plot(5,3) 
error = 9 - 4 = 5

x = 6: plot(6,3) 
error = 5 - 4 = 1

x = 7: plot(7,3) 
error = 1 - 4 = -3 
   y = 3 + 1 = 4 
   error = -3 + 10 -= 7 
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C Version

!25

#define SWAP(x, y) (x ^= y ^= x ^= y)
#define ABS(x) (((x)<0) ? -(x) : (x))

void line(int x0, int y0, int x1, int y1) {
  char steep = (ABS(y1 - y0) > ABS(x1 - x0)) ? 1 : 0;
  if (steep) {
    SWAP(x0, y0);
    SWAP(x1, y1);
  }
  if (x0 > x1) {
    SWAP(x0, x1);
    SWAP(y0, y1);
  }
  int deltax = x1 - x0;
  int deltay = ABS(y1 - y0);
  int error = deltax / 2;
  int ystep;
  int y = y0
  int x;
  ystep = (y0 < y1) ? 1 : -1;
  for (x = x0; x <= x1; x++) {
    if (steep)
      plot(y,x);
    else
      plot(x,y);
    error = error - deltay;
    if (error < 0) {
      y += ystep;
      error += deltax;
    }
  }
}

Modified to work in any 
quadrant and for any slope.

Estimate software 
performance (RISCV version)

What’s needed to do it in 
hardware?

Goal is one pixel per cycle.  
Pipelining might be necessary.
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Accelerator Integration
• Arbiters control access to/from DRAM

!26

Frame 
buffer

DRAM

Graphics 
Accelerator

arb

arb

CPU

Video Interface

• CPU initializes line engine by sending pair of points and color 
value to use.  Writes to “trigger” registers initiate line engine. 

• Framebuffer (DRAM) has one write port - Shared by CPU and 
line engine.  Priority to CPU - Line engine stalls when CPU writes.
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Hardware Implementation Notes

!27

x0

y1
x1

0

32

0x8040_0040:
0x8040_0044:

0x8040_0064:Read-only control register ready
0x8040_0060: color

y0

10

x0

x1

y0

0x8040_0048:
0x8040_004c:
0x8040_0050:
0x8040_0054:
0x8040_0058:
0x8040_005c:

Write-only trigger 
registers

Write-only non-trigger 
registers

• CPU initializes line engine by sending pair of points and color 
value to use.  Writes to “trigger” registers initiate line engine. 

y1


