
EE141

EECS 151/251A 
Fall	2019  
Digital	Design	and	Integrated	Circuits

Instructor:		
John	Wawrzynek

Lecture 14

EE141

Outline
❑ Accelerators

 2

Spring 2019 EECS151 Page

Motivation
• 90/10 rule:

– Often 90 percent of the program runtime and energy is consumed
by 10 percent of the code (inner-loops).

– Only small portions of an application become the performance
bottlenecks.

– Usually, these portions of code are data processing intensive with
relatively fixed dataflow patterns (little control): cryptography,
graphics, video, communications signal processing, networking, ...

– The other 90 percent of the code not performance critical: UI,
control, glue, exceptional cases, ...

!3

 Hybrid processor-core hardware accelerator
– Hardware accelerator/economizer implements specialized circuits for

inner-loops.
– Processor packs the noncritical portions (90%), 10% of the computation

into minimal space.

Energy	Efficiency	of	CPU	versus	
ASIC	versus	FPGA

!4

Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi,
Alex Solomatnikov, Benjamin C. Lee, Stephen Richardson,
Christos Kozyrakis, and Mark Horowitz. Understanding sources
of inefficiency in general-purpose chips. SIGARCH Comput.
Archit. News, 38:37–47, June 2010.

CPUASIC

500x

∴ FPGA : CPU = 70x

Ian Kuon and Jonathan Rose. Measuring the gap between
fpgas and asics. In Proceedings of the 2006 ACM/SIGDA 14th
international symposium on Field programmable gate arrays,
FPGA ’06, pages 21–30, New York, NY, USA, 2006. ACM FPGA ASIC

7x

Similar story for performance efficiency

Spring 2019 EECS151 Page

Why are accelerators more efficient
than processors?

• Performance/cost or Energy/op
1. exploit problem specific parallelism,

at thread and instructions level
2. custom “instructions” match the set

of operations needed for the
algorithm (replace multiple
instructions with one), custom word
width arithmetic, etc.

3. remove overhead of instruction
storage and fetch, ALU
multiplexing

!5

What about FPGAs?

Spring 2019 EECS151 Page

“System on Chip” Example
• Three ARM

cores, plus
lots of
accelerators

• Targets smart
phones

!6

Spring 2019 EECS151 Page

Processors in FPGAs

!7

Xilinx ZYNQ

Altera: Dual-Core ARM Cortex-A9 MPCore Processor

Spring 2019 EECS151 Page

Soft Processors

Intel/Altera: Nios

Xilinx: Microblaze

Spring 2019 EECS151 Page

Custom Hardware in the Pipeline

!9

Spring 2019 EECS151 Page

Custom Instructions

!10

• Example: Tensilca
– Special language TIE

is used for defining
special function
units

– Custom architecture
automatically
compiled

– Compiler support
challenging

Spring 2019 EECS151 Page

Tightly Coupled Co-processor

!11

MicroBlaze: Fast Simplex Links (FSL)

Similar to MIPS coprocessor model

Spring 2019 EECS151 Page

MicroBlaze Fast Simplex Links

!12

Spring 2019 EECS151 Page

Memory Mapped Accelerators

• Memory mapped control/
data registers

!13

CPU accelerator

Memory System

Address
Data

CPU

accelerator

Memory System

Dcache

Peripheral Bus (OPB, PCIe)Peripheral Bus (AXI, PCIe)

CPU

accelerator

Memory System

Dcache

Peripheral Bus (OPB, PCIe)

Memory
block

Peripheral Bus (AXI, PCIe)

Spring 2019 EECS151 Page

CPU/Accelerator Shared Memory

!14

CPU
accelerator

Memory Arbiter

Memory System

Dcache

CPU
accelerator

Memory System

Dcache

• Processor instructs accelerator to independently access memory and perform
work

• How does processor synchronize with accelerator (how does it know when it is
done)?

• Data Cache on CPU creates “coherency” issue
• What about a cache in the accelerator?

Spring 2019 EECS151 Page

RISCV-151 Video Subsystem

!15

• Gives software ability to display information on screen.
• Also, similar to standard graphics cards:

• 2D Graphics acceleration to offload work from processor

01000100001
10010000100
00111100010
11010101000

Instruction
Memory

01000100001
10010000100
00111100010
11010101000

Data
Memory

MIPS CPUSerial
Interface

Video
Interface

2-D
Graphics

Accelerator

FPGA Chip

XUPV5 BoardXilinx PYNQ Board

RISC-V CPU

Spring 2019 EECS151 Page

“Framebuffer” HW/SW Interface
• A range of memory addresses correspond to the display.
• CPU writes (using sw instruction) pixel values to change display.
• No synchronization required. Independent process reads pixels from

memory and sends them to the display interface at the required rate.

0

0xFFFFFFFF
CPU address map

!16

Ex: 1024 pixels/line X 768 lines

0x80000000

0x803FFFFC Frame
buffer Display Origin:

Increasing X
values to the
right. Increasing
Y values down.

(0,0)

(1023, 767)

Spring 2019 EECS151 Page

Framebuffer Implementation
• Framebuffer like a simple dual-ported memory.

Two independent processes access framebuffer:

!17

CPU writes pixel
locations. Could be

in random order, e.g.
drawing an object,

or sequentially, e.g.
clearing the screen.

Video Interface
continuously reads
pixel locations in
scan-line order and
sends to physical
display.

• How big is this memory and how do we implement
it? For example:
 1024 x 768 pixels/frame x 24 bits/pixel

Frame
buffer

Spring 2019 EECS151 Page

Memory Mapped Framebuffer

0

0xFFFFFFFF
MIPS address map

!18

1024 pixels/line X 768 lines

0x80000000

0x8023FFFD Frame
buffer

Display Origin:
Increasing X
values to the
right. Increasing
Y values down.

(0,0)

(1023, 767)

1024 * 768 = 786,432 pixels
We choose 24 bits/pixel

{ Red[7:0] ; Green[7:0] ; Blue[7:0] }
786,432 * 3 = 2,359,296 Bytes

• Total memory bandwidth needed to support frame
buffer?

Spring 2019 EECS151 Page

Frame Buffer Physical Interface

!19

More generally, how does software
interface to I/O devices?

CPU

Video
Interface

 DRAM Controller / Arb

FPGA

Processor Side: provides a
memory mapped programming
interface to video display.

Video Interface Block:
accepts pixel values from
FB, streams pixels values
and control signals to
physical device.

DRAM “Arb”:
arbitrates among
multiple DRAM users.

Spring 2019 EECS151 Page

Line Drawing Acceleration

!20

0

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

(x0,y0) (x1,y1)From to
Line equation defines
all the points:

For each x value, could compute y, with:
then round to the nearest integer y value.

Slope can be precomputed, but still requires floating
point * and + in the loop: relatively slow or expensive!

Spring 2019 EECS151 Page

Bresenham Line Drawing Algorithm

• Computers of the day, slow at
complex arithmetic operations,
such as multiply, especially on
floating point numbers.

• Bresenham’s algorithm works
with integers and without
multiply or divide.

• Simplicity makes it appropriate
for inexpensive hardware
implementation.

• With extension, can be used for
drawing circles. !21

Developed by Jack E. Bresenham in 1962 at IBM.
"I was working in the computation lab at IBM's San Jose
development lab. A Calcomp plotter had been attached to
an IBM 1401 via the 1407 typewriter console. ...

http://en.wikipedia.org/wiki/Jack_E._Bresenham
http://en.wikipedia.org/wiki/International_Business_Machines
http://en.wikipedia.org/wiki/Calcomp_plotter
http://en.wikipedia.org/wiki/IBM_1401

Spring 2019 EECS151 Page

Line Drawing Algorithm

!22

This version assumes: x0 < x1, y0 < y1, slope =< 45 degrees
function line(x0, x1, y0, y1)
 int deltax := x1 - x0
 int deltay := y1 - y0
 int error := deltax / 2
 int y := y0
 for x from x0 to x1
 plot(x,y)
 error := error - deltay
 if error < 0 then
 y := y + 1
 error := error + deltax

Note: error starts at deltax/2 and gets decremented
by deltay for each x. y gets incremented when error
goes negative, therefore y gets incremented at a rate
proportional to deltax/deltay.

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

Spring 2019 EECS151 Page

Line Drawing, Examples

!23

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

deltay = 1 (very low slope).
y only gets incremented
once (halfway between x0
and x1)

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

deltay = deltax (45 degrees,
max slope). y gets
incremented for every x

Spring 2019 EECS151 Page

Line Drawing Example

!24

0 1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6
7

function line(x0, x1, y0, y1)
 int deltax := x1 - x0
 int deltay := y1 - y0
 int error := deltax / 2
 int y := y0
 for x from x0 to x1
 plot(x,y)
 error := error - deltay
 if error < 0 then
 y := y + 1
 error := error + deltax

deltax = 10, deltay = 4, error = 10/2 = 5, y = 1

(1,1) -> (11,5)

x = 1: plot(1,1)
error = 5 - 4 = 1

x = 2: plot(2,1)
error = 1 - 4 = -3
 y = 1 + 1 = 2
 error = -3 + 10 = 7

x = 3: plot(3,2)
error = 7 - 4 = 3

x = 4: plot(4,2)
error = 3 - 4 = -1
 y = 2 + 1 = 3
 error = -1 + 10 = 9

x = 5: plot(5,3)
error = 9 - 4 = 5

x = 6: plot(6,3)
error = 5 - 4 = 1

x = 7: plot(7,3)
error = 1 - 4 = -3
 y = 3 + 1 = 4
 error = -3 + 10 -= 7

Spring 2019 EECS151 Page

C Version

!25

#define SWAP(x, y) (x ^= y ^= x ^= y)
#define ABS(x) (((x)<0) ? -(x) : (x))

void line(int x0, int y0, int x1, int y1) {
 char steep = (ABS(y1 - y0) > ABS(x1 - x0)) ? 1 : 0;
 if (steep) {
 SWAP(x0, y0);
 SWAP(x1, y1);
 }
 if (x0 > x1) {
 SWAP(x0, x1);
 SWAP(y0, y1);
 }
 int deltax = x1 - x0;
 int deltay = ABS(y1 - y0);
 int error = deltax / 2;
 int ystep;
 int y = y0
 int x;
 ystep = (y0 < y1) ? 1 : -1;
 for (x = x0; x <= x1; x++) {
 if (steep)
 plot(y,x);
 else
 plot(x,y);
 error = error - deltay;
 if (error < 0) {
 y += ystep;
 error += deltax;
 }
 }
}

Modified to work in any
quadrant and for any slope.

Estimate software
performance (RISCV version)

What’s needed to do it in
hardware?

Goal is one pixel per cycle.
Pipelining might be necessary.

Spring 2019 EECS151 Page

Accelerator Integration
• Arbiters control access to/from DRAM

!26

Frame
buffer

DRAM

Graphics
Accelerator

arb

arb

CPU

Video Interface

• CPU initializes line engine by sending pair of points and color
value to use. Writes to “trigger” registers initiate line engine.

• Framebuffer (DRAM) has one write port - Shared by CPU and
line engine. Priority to CPU - Line engine stalls when CPU writes.

Spring 2019 EECS151 Page

Hardware Implementation Notes

!27

x0

y1
x1

0

32

0x8040_0040:
0x8040_0044:

0x8040_0064:Read-only control register ready
0x8040_0060: color

y0

10

x0

x1

y0

0x8040_0048:
0x8040_004c:
0x8040_0050:
0x8040_0054:
0x8040_0058:
0x8040_005c:

Write-only trigger
registers

Write-only non-trigger
registers

• CPU initializes line engine by sending pair of points and color
value to use. Writes to “trigger” registers initiate line engine.

y1

