
EE141

EECS 151/251A 
Spring	2019  
Digital	Design	and	Integrated	
Circuits
Instructor:		
John	Wawrzynek

Lecture 13

EE141

Project Introduction
❑ You will design and optimize a RISC-V

processor
❑ Phase 1: Design and demonstrate a processor
❑ Phase 2:
▪ ASIC Lab – implement cache memory and generate

complete chip layout
▪ FPGA Lab – Add video display and graphics

accelerator

 2

Today discuss how to design the processor

What	is	RISC-V?
• Fifth	generation	of	RISC	design	from	UC	Berkeley	
• A	high-quality,	license-free,	royalty-free	RISC	ISA	specification	
• Experiencing	rapid	uptake	in	both	industry	and	academia	
• Supported	by	growing	shared	software	ecosystem	
• Appropriate	for	all	levels	of	computing	system,	from	micro-

controllers	to	supercomputers	
– 32-bit,	64-bit,	and	128-bit	variants	(we’re	using	32-bit	in	class,	

textbook	uses	64-bit)		
• Standard	maintained	by	non-profit	RISC-V	Foundation

�3

https://riscv.org/specifications/

Foundation	Members	(60+)

 4
Rumble
Developme
nt

Platinum:

Gold,		Silver,	Auditors:

Instruction	Set	Architecture	(ISA)
• Job	of	a	CPU	(Central	Processing	Unit,	aka	Core):	

execute	instructions	
• Instructions:	CPU’s	primitives	operations	

– Instructions	performed	one	after	another	in	sequence	
– Each	instruction	does	a	small	amount	of	work	(a	tiny	part	of	a	

larger	program).	
– Each	instruction	has	an	operation	applied	to	operands,	
– 		and	might	be	used	change	the	sequence	of	instruction.	

• CPUs	belong	to	“families,”	each	implementing	its	own	
set	of	instructions	

• CPU’s	particular	set	of	instructions	implements	an	
Instruction	Set	Architecture	(ISA)	

– Examples:	ARM,	Intel	x86,	MIPS,	RISC-V,	IBM/Motorola	
PowerPC	(old	Mac),	Intel	IA64,	...

�5

If you need more
info on processor
organization.

Complete	RV32I	ISA

�6

Not	in	EECS151/251A *
*

* implemented in the ASIC project

Computer Science 61C Spring 2018 Wawrzynek and Weaver

Summary of RISC-V Instruction Formats

 7

Binary encoding of machine instructions. Note the common fields.

“State”	Required	by	RV32I	ISA
Each	instruction	reads	and	updates	this	state	during	execution:	
• Registers	(x0..x31)	
−Register	file	(or	regfile)	Reg	holds	32	registers	x	32	bits/register:	
Reg[0].. Reg[31]	

−First	register	read	specified	by	rs1	field	in	instruction	
−Second	register	read	specified	by	rs2	field	in	instruction	
−Write	register	(destination)	specified	by	rd	field	in	instruction	
−	x0	is	always	0	(writes	to	Reg[0]are	ignored)	

• Program	Counter	(PC)	
−Holds	address	of	current	instruction	

•Memory	(MEM)	
−Holds	both	instructions	&	data,	in	one	32-bit	byte-addressed	memory	
space	

−We’ll	use	separate	memories	for	instructions	(IMEM)	and	data	(DMEM)	
▪ Later	we’ll	replace	these	with	instruction	and	data	caches	

−Instructions	are	read	(fetched)	from	instruction	memory	(assume	IMEM	
read-only)	

−Load/store	instructions	access	data	memory

�8

EE141

RISC-V State Elements

 9

❑ State encodes everything about the execution
status of a processor:
– PC register
– 32 registers
– Memory

Note: for these state elements, clock is used for write but not
for read (asynchronous read, synchronous write).

EE141

EECS150 - Lec07-MIPS

RISC-V Microarchitecture Oganization

 10

Datapath + Controller + External Memory

Controller

EE141

Microarchitecture

Multiple implementations for a single architecture:

– Single-cycle
– Each instruction executes in a single clock cycle.

– Multicycle
– Each instruction is broken up into a series of shorter steps with one step per

clock cycle.
– Pipelined (variant on “multicycle”)

– Each instruction is broken up into a series of steps with one step per clock
cycle

– Multiple instructions execute at once by overlapping in time.
– Superscalar

– Multiple functional units to execute multiple instructions at the same time
– Out of order...

– Hey, who says we have to follow the program exactly....

 11

First	Design:	One-Instruction-Per-Cycle	RISC-V	Machine

1. Current	state	outputs	
drive	the	inputs	to	the	
combinational	logic,	
whose	outputs	settles	
at	the	values	of	the	
state	before	the	next	
clock	edge	

2. At	the	rising	clock	edge,	
all	the	state	elements	
are	updated	with	the	
combinational	logic	
outputs,	and	execution	
moves	to	the	next	clock	
cycle	(next	instruction)�12

Reg[]

pc

IMEM

DMEM

Combinational	
Logic

clock

On	every	tick	of	the	clock,	the	computer	executes	one	instruction

Basic	Phases	of	Instruction	Execution

IM
EM

+4

rs2
rs1
rd

Re
g[
]

ALU

DM
EM

imm

1.	Instruction	
Fetch

2.	Decode/	
				Register	

Read

3.	Execute 4.	Memory 5.	Register						Write

PC

�13

m
ux

Clock
time

Implementing	the	add	instruction

add rd, rs1, rs2

• Instruction	makes	two	changes	to	machine’s	state:	
 Reg[rd] = Reg[rs1] + Reg[rs2]
 PC = PC + 4

�14

Control	Logic

Datapath	for	add

�15

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0]

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD Reg[rs1]

Reg[rs2]
+ alu

(RegWriteEnable)RegWEn	
(1=write,	0=no	write)

Timing	Diagram	for	add	

�16

1000 1004PC

1004 1008PC+4

add x1,x2,x3 add x6,x7,x9inst[31:0]

Clock

time

+4

pcpc+4 inst[11:7]

inst[19:15]
inst[24:20]

IMEM

inst[31:0]

+
RegWEn

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD Reg[rs1]

Reg[rs2]

clock

alu

Reg[2] Reg[7]Reg[rs1]

Reg[2]+Reg[3]alu Reg[7]+Reg[9]

Reg[3] Reg[9]Reg[rs2]

???Reg[1] Reg[2]+Reg[3]

Implementing	the	sub	instruction

sub rd, rs1, rs2

• Almost	the	same	as	add,	except	now	have	to	subtract	
operands	instead	of	adding	them	

• inst[30]	selects	between	add	and	subtract

�17

Control	Logic

Datapath	for	add/sub

�18

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0] RegWEn	
(1=write,	0=no	write)

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD Reg[rs1]

Reg[rs2]
aluALU

ALUSel	
(Add=0/Sub=1)

Implementing	other	R-Format	instructions

• All	implemented	by	decoding	funct3	and	funct7	fields	and	
selecting	appropriate	ALU	function

�19

Implementing	the	addi	instruction
• RISC-V	Assembly	Instruction:	
addi x15,x1,-50

�20

111111001110 00001 000 01111 0010011

OP-Immrd=15ADDimm=-50 rs1=1

Control	Logic

Datapath	for	add/sub

�21

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0] RegWEn	
(1=write,	0=no	write)

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD Reg[rs1]

Reg[rs2]
alu

ALU

ALUSel	
(Add=0/Sub=1)

Control	Logic

Adding	addi	to	datapath

�22

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0]

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Reg[rs1]

Reg[rs2]

alu
ALU

ALUSel=Add

Imm.	
Gen

0

1

RegWEn=1

inst[31:20] imm[31:0]

ImmSel=I BSel=1

I-Format	immediates

�23

inst[31:0]

------inst[31]-(sign-extension)------- inst[30:20]

imm[31:0]
Imm.	
Gen

inst[31:20] imm[31:0]

ImmSel=I

• High	12	bits	of	instruction	(inst[31:20])	copied	to	low	12	bits	
of	immediate	(imm[11:0])	

• Immediate	is	sign-extended	by	copying	value	of	inst[31]	to	
fill	the	upper	20	bits	of	the	immediate	value	(imm[31:12])

Control	Logic

Adding	addi	to	datapath

CS	61c �24

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0]

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Reg[rs1]

Reg[rs2]

alu
ALU

ALUSel=Add

Imm.	
Gen

0

1

RegWEn=1

inst[31:20] imm[31:0]

ImmSel=I BSel=1

Also	works	for	all	other	I-format	
arithmetic	instruction	
(slti,sltiu,andi,ori,x
ori,slli,srli,srai)	just	
by	changing	ALUSel

Implementing	Load	Word	instruction
• RISC-V	Assembly	Instruction:	
lw x14, 8(x2)

�25

000000001000 00010 010 01110 0000011

LOADrd=14LWimm=+8 rs1=2

Control	Logic

Adding	addi	to	datapath

CS	61c �26

+4

pc
pc+4

inst[11:7]

inst[19:15]

inst[24:20]

IMEM

inst[31:0]

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Reg[rs1]

Reg[rs2]

aluALU

ALUSel=Add

Imm.	
Gen

0

1

RegWEn=1

inst[31:20]
imm[31:0]

ImmSel=I BSel=1

Adding	lw	to	datapath

�27

IMEM ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr DataR 0

1
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:20]

alu

mem

wb
pc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BSel ALUSel MemRW WBSel

wb

Adding	lw	to	datapath

CS	61c �28

IMEM ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr DataR 0

1
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:20]

alu

mem

wb
pc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=I RegWEn=1 BSel=1 ALUSel=add MemRW=Read WBSel=0

wb

All	RV32	Load		Instructions

• Supporting	the	narrower	loads	requires	additional	circuits	to	
extract	the	correct	byte/halfword	from	the	value	loaded	from	
memory,	and	sign-	or	zero-extend	the	result	to	32	bits	before	
writing	back	to	register	file.

�29

funct3	field	encodes	size	and	
signedness	of	load	data

Implementing	Store	Word	instruction
• RISC-V	Assembly	Instruction:	
sw x14, 8(x2)

�30

0000000 01110 00010 010 01000 0100011

STOREoffset[4:0]	
=8

SWoffset[11:5]	
=0

rs2=14 rs1=2

combined	12-bit	offset	=	80000000 01000

Adding	lw	to	datapath

�31

IMEM ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr DataR 0

1
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:20]

alu

mem

wb
pc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BSel ALUSel MemRW WBSel

wb

Adding	sw	to	datapath

�32

IMEM
ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR 0

1pc
0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wbpc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=S RegWEn=0 Bsel=1 ALUSel=Add MemRW=Write WBSel=*

wb

*=	“Don’t	Care”

CS	61c �33

IMEM ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr DataR 0

1
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb
pc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=S RegWEn BSel=1 ALUSel=Add MemRW=Write WBSel=*

wb

Adding	sw	to	datapath

*=	“Don’t	Care”

I-Format	immediates

�34

inst[31:0]

------inst[31]-(sign-extension)------- inst[30:20]

imm[31:0]
Imm.	
Gen

inst[31:20] imm[31:0]

ImmSel=I

• High	12	bits	of	instruction	(inst[31:20])	copied	to	low	12	bits	
of	immediate	(imm[11:0])	

• Immediate	is	sign-extended	by	copying	value	of	inst[31]	to	
fill	the	upper	20	bits	of	the	immediate	value	(imm[31:12])

I	&	S	Immediate	Generator

�35

imm[11:5] rs2 rs1 funct3 imm[4:0] S-opcode

imm[11:0] rs1 funct3 rd I-opcode

inst[31](sign-extension) inst[30:25]

imm[31:0]

inst[31:0]

inst[24:20]

SI

inst[31](sign-extension) inst[30:25] inst[11:7]

067111214151920242531

045101131

1 6
5

5

S

I

• Just	need	a	5-bit	mux	to	select	between	two	positions	where	low	
five	bits	of	immediate	can	reside	in	instruction	

• Other	bits	in	immediate	are	wired	to	fixed	positions	in	instruction

Implementing	Branches

• B-format	is	mostly	same	as	S-Format,	with	two	register	
sources	(rs1/rs2)	and	a	12-bit	immediate	

• But	now	immediate	represents	values	-4096	to	+4094	in	
2-byte	increments	

• The	12	immediate	bits	encode	even	13-bit	signed	byte	
offsets	(lowest	bit	of	offset	is	always	zero,	so	no	need	to	
store	it)	

�36

Example: if rs1 = rs2 then pc ← pc + offset

Adding	sw	to	datapath

�37

IMEM
ALU

Imm.	
Gen

+4

DMEM

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR 0

1pc
0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wbpc+4

Reg[rs1]

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn Bsel ALUSel MemRW WBSel=

wb

Adding	branches	to	datapath

�38

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1

1

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

Adding	branches	to	datapath

�39

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1

1

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb

alu

pc+4

pc

imm[31:0]

Reg[rs2]

wb

inst[31:0] ImmSel=B RegWEn=0 BrUn BrEq BrLT ASel=1Bsel=1

ALUSel=Add

MemRW=Read WBSel=*PCSel=taken/not-taken

Reg[rs1]

Branch	Comparator
• BrEq	=	1,	if	A=B	
• BrLT	=	1,	if	A	<	B	
• BrUn	=1	selects	unsigned	comparison	
for	BrLT,	0=signed	

• BGE	branch:	A	>=	B,	if		!(A<B)

�40

Branch	
Comp.

A

B

BrUn BrEq BrLT

Implementing	JALR	Instruction	(I-Format)

• JALR	rd,	rs,	immediate	
−Writes	PC+4	to	Reg[rd]	(return	address)	
− Sets	PC	=	Reg[rs1]	+	immediate	
− Uses	same	immediates	as	arithmetic	and	loads	
▪ no	multiplication	by	2	bytes

�41

Adding	branches	to	datapath

�42

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1

1

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb

alu

pc+4

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb
Reg[rs1]

�43

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

01

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

Adding	jalr	to	datapath

0
1
2

pc+4

Adding	jalr	to	datapath

�44

IMEM
ALU

Imm.	
Gen

+4

DMEM

Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=B RegWEn=1

BrUn=* BrEq=* BrLT=*

Asel=0Bsel=1

ALUSel=Add

MemRW=Read WBSel=2PCSel

wb

Implementing	jal	Instruction

• JAL	saves	PC+4	in	Reg[rd]	(the	return	address)	
• Set	PC	=	PC	+	offset	(PC-relative	jump)	
• Target	somewhere	within		±219	locations,	2	bytes	apart	
− 	±218	32-bit	instructions	

• Immediate	encoding	optimized	similarly	to	branch	instruction	
to	reduce	hardware	cost

�45

Adding	jal	to	datapath

�46

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb
Reg[rs1]

Adding	jal	to	datapath

�47

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel=J RegWEn=1

BrUn=* BrEq=* BrLT=*

Asel=1Bsel=1

ALUSel=Add

MemRW=Read WBSel=2PCSel

wb

Single-Cycle	RISC-V	RV32I	Datapath

�48

IMEM
ALU

Imm.	
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUn BrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb
Reg[rs1]

EE141

Controller Implementation:
❑ Control logic works really well as a case

statement... 
always @* begin  
 op = instr[26:31];  
 imm = instr[15:0]; ...  
  
 reg_dst = 1'bx; // Don't care  
 reg_write = 1'b0; // Do care, side effecting 
 ...  
 case (op)  
 6'b000000: begin reg_write = 1; ... end 
 ...

 49

EE141

Processor Pipelining

EE141

Review: Processor Performance 
(The Iron Law)

 Program Execution Time
 = (# instructions)(cycles/instruction)(seconds/cycle)

 = # instructions x CPI x TC

 51

EE141

Single-Cycle Performance
• TC is limited by the critical path (lw)

 52

EE141

Single-Cycle Performance

• Single-cycle critical path:

 Tc = tq_PC + tmem + max(tRFread, tsext + tmux) + tALU +
tmem + tmux + tRFsetup

• In most implementations, limiting paths are:

– memory, ALU, register file.
– Tc = tq_PC + 2tmem + tRFread + tmux + tALU + tRFsetup

 53

EE141

Pipelined Processor

• Temporal parallelism
• Divide single-cycle processor into 5 stages:
– Fetch
– Decode
– Execute
– Memory
–Writeback
• Add pipeline registers between stages

 54

EE141

Single-Cycle vs. Pipelined Performance

 55

EE141

Single-Cycle and Pipelined Datapath

 56

EE141

Corrected Pipelined Datapath
• WriteReg must arrive at the same time as Result

 57

EE141

Pipelined Control

Same control unit as single-cycle processor

Control delayed to proper pipeline stage 58

EE141

Pipeline Hazards

❑ Occurs when an instruction depends on results
from previous instruction that hasn’t completed.

❑ Types of hazards:
– Data hazard: register value not written back to register

file yet
– Control hazard: next instruction not decided yet

(caused by branches)

 59

EE141

Processor Pipelining

 60

IF1 IF2 ID X1 X2 M1 M2 WB
IF1 IF2 ID X1 X2 M1 M2 WB

Deeper pipelines => less logic per stage => high clock rate.

Deeper pipeline example.

Deeper pipelines* => more hazards => more cost and/or higher CPI.

Remember, Performance = # instructions X Frequencyclk / CPI

But

Cycles per instruction might go up because of unresolvable hazards.

How about shorter pipelines ... Less cost, less performance

*Many designs included pipelines as long as 7, 10 and even 20 stages (like in the Intel Pentium 4). The later
"Prescott" and "Cedar Mill" Pentium 4 cores (and their Pentium D derivatives) had a 31-stage pipeline.

http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Pentium_4
http://en.wikipedia.org/wiki/Pentium_D

EE141

3-Stage Pipeline

EE141

3-Stage Pipeline (used for FPGA/ASIC project)

 62

I X M

The blocks in the datapath with the greatest
delay are: IMEM, ALU, and DMEM. Allocate
one pipeline stage to each:

Use PC register as address
to IMEM and retrieve next

instruction. Instruction gets
stored in a pipeline register,

also called “instruction
register”, in this case.

Most details you will need to work out for yourself. Some details to follow ...
In particular, let’s look at hazards.

Access data memory or I/O
device for load or store.
Allow for setup time for
register file write.

Use ALU to compute
result, memory

address, or branch
target address.

EE141

3-stage Pipeline

 63

 add x5, x3, x4 I X M
 add x7, x6, x5 I X M

reg 5 value updated herereg 5 value needed here!

Data Hazard

Selectively forward ALU result back to input of ALU.

The fix:

• Need to add mux at input
to ALU, add control logic to
sense when to activate.
Check reference for
details.

ALU

control

EE141

3-stage Pipeline

 64

 lw x5, offset(x4) I X M
I X M

Memory value known here. It is
written into the regfile on this edge.

value needed here!

Load Hazard

 add x7, x6, x5

 lw x5, offset(x4) I X M
I nop nop

I X M
 add x7, x6, x5
 add x7, x6, x5

The fix: Delay the dependent instruction by one cycle to
allow the load to complete, send the result of
load directly to the ALU (and to the regfile). No
delay if not dependent!

EE141

Control Hazard3-stage Pipeline

 65

 beq x1, x2, L1 I X M
 add x5, x3, x4 I X M

add x6, x1, x2 I X M
L1: sub x7, x6, x5 I X

branch address ready herebut needed here!

The fix:
Several Possibilities:*
1. Always delay fetch of instruction after branch
2. Assume branch “not taken”, continue with instruction

at PC+4, and correct later if wrong.
3. Predict branch taken or not based on history (state)

and correct later if wrong.

1. Simple, but all branches now take 2 cycles (lowers performance)
2. Simple, only some branches take 2 cycles (better performance)
3. Complex, very few branches take 2 cycles (best performance)

* MIPS defines “branch delay slot”, RISC-V doesn’t

EE141

Control HazardPredict “not taken”

 66

 bneq x1, x1, L1 I X M
 add x5, x3, x4 I X M

add x6, x1, x2 I X M
L1: sub x7, x6, x5 I X

 beq x1, x1, L1 I X M
 add x5, x3, x4 I nop nop
L1: sub x7, x6, x5 I X M

Branch address ready at end of X stage:
• If branch “not taken”, do nothing.
• If branch “taken”, then kill instruction in I stage (about to

enter X stage) and fetch at new target address (PC)

Not taken

Taken

EE141

EECS151 Project CPU Pipelining Summary

❑ Pipeline rules:
–Writes/reads to/from DMem are clocked on the leading

edge of the clock in the “M” stage
–Writes to RegFile at the end of the “M” stage
– Instruction Decode and Register File access is up to you.

❑ Branch: predict “not-taken”

❑ Load: 1 cycle delay/stall on dependent instruction

❑ Bypass ALU for data hazards

❑ More details in upcoming spec
 67

I X M
instruction

fetch
execute access

data
memory

3-stage
pipeline

