
EE141

EECS 151/251A 
Spring	2019 
Digital	Design	and	
Integrated	Circuits
Instructor:		
John	Wawrzynek

Lecture 10

 1

EE141

The Switch – Dynamic Model (Simplified)

|VGS|

S D

G

|VGS| ≥ |VT|

S D
Ron

G

CG

CDCS

 2

EE141

Switch Sizing
What happens if we make a switch W
times larger (wider)

|VGS|

S D

G

|VGS| ≥ |VT|

S D
Ron/W

G

CGW

CDWCSW

W

 3

EE141

Switch Parasitic Model

The pull-down switch (NMOS)

Vin

CG

Vout

CD

Minimum-size switch

RN

Sizing the transistor (factor W)

Vin

WCG

Vout

WCDRN

W

We assume transistors of minimal length (or at least constant
length). R’s and C’s in units of per unit width.

 4

EE141

The pull-up switch (PMOS)

Minimum-size switch

Vin

CG Vout

CD

RP = 2RN
Vin

2CG Vout

2CD

RN

Sized for symmetry

Vin

2WCG Vout

2WCD

RN

General sizing

W

Switch Parasitic Model

 5

EE141

Inverter Parasitic Model

Vin

Cin = 3WCG

Vout

Cint = 3WCD

RN
W

RN
W

Drain and gate capacitance of
transistor are directly related by
process (γ≈1)

CD= γCG

= 3WγCG

tp = 0.69
RN
W

⎛

⎝
⎜

⎞

⎠
⎟(3WγCG) = 0.69(3γ)RNCG

Intrinsic delay of inverter
independent of size

 6

EE141

Inverter with Load Capacitance

Vin

Cin =  
3WCG

Vout

Cint =  
3WγCG

RN
W

RN
W

CL

f = fanout = ratio between load and input capacitance of gate

 7

= 0.69(3γRNCG)(1 +
CL

γCin
)

= tinv(1 +
CL

γCin
) = tp0(1 + f /γ)

tp = 0.69(RN /W)(Cint + CL)

= 0.69(RN /W)(3WγCG + CL)

EE141

Inverter Delay Model

tp= tp0(1+f/γ)

f

Delay

tinv

Question: how does transistor sizing (W) impact delay?

 8

Delay linearly proportional to fanout, f.
For f=0, delay is tinv

Adding Wires to gate delay
‣ Wires have finite resistance, so have distributed R and C:

with r = res/length, c = cap/length, ∆t ∝ rcL2 ≅ rc + 2rc +3rc + ...

Spring 2003 EECS150 – Lec10-Timing Page 16

Wire Delay

• Even in those cases where the

transmission line effect is

negligible:

– Wires posses distributed

resistance and capacitance

– Time constant associated with

distributed RC is proportional to

the square of the length

• For short wires on ICs,
resistance is insignificant
(relative to effective R of
transistors), but C is important.

– Typically around half of C of
gate load is in the wires.

• For long wires on ICs:

– busses, clock lines, global
control signal, etc.

– Resistance is significant,
therefore distributed RC effect
dominates.

– signals are typically “rebuffered”
to reduce delay:

v1

v4
v3

v2

time

v1 v2 v3 v4

Spring 2003 EECS150 – Lec10-Timing Page 16

Wire Delay

• Even in those cases where the

transmission line effect is

negligible:

– Wires posses distributed

resistance and capacitance

– Time constant associated with

distributed RC is proportional to

the square of the length

• For short wires on ICs,
resistance is insignificant
(relative to effective R of
transistors), but C is important.

– Typically around half of C of
gate load is in the wires.

• For long wires on ICs:

– busses, clock lines, global
control signal, etc.

– Resistance is significant,
therefore distributed RC effect
dominates.

– signals are typically “rebuffered”
to reduce delay:

v1

v4
v3

v2

time

v1 v2 v3 v4

 9

‣ Wire propagation delay is around half of what it would be if R and
W were “lumped”: tp = 0.38(rL * cL) = 0.38rcL2

Gate Driving long wire and other gates

 10

tp = 0.69RdrCint + 0.69RdrCw + 0.38RwCw + 0.69RdrCfan + 0.69RwCfan

= 0.69Rdr(Cint + Cfan) + 0.69(Rdrcw + rwCfan)L + 0.38rwcwL2

Rw = rwL, Cw = cwL

Driving Large Loads
‣ Large fanout nets: clocks, resets, memory bit lines, off-chip
‣ Relatively small driver results in long rise time (and thus

large gate delay)

‣ Strategy:

‣ How to optimally scale drivers?
‣ Optimal trade-off between delay per stage and total number of stages?

Staged Buffers

 11

EE141

Driving Large Loads

CL

In Out

❑ For some given CL:
▪ How many stages are needed to minimize delay?
▪ How to size the inverters?

 12

❑ Get fastest delay if build one very big inverter
▪ So big that delay is set only by self-loading

❑ Likely not the solution you’re interested in
▪ Someone has to drive this inverter…

Cload

EE141

Delay Optimization
❑ First assume given:
▪ A fixed number of inverters
▪ The size of the first inverter
▪ The size of the load that needs to be driven

❑ What is the minimal delay of the inverter chain

 13

EE141
 14

tp, j = tp0(1 +
Cg, j+1

γCg, j
) = tp0(1 + fj /γ)

tp =
N

∑
j=1

tp, j = tp0

N

∑
j=1

(1 +
Cg, j+1

γCg, j
), Cg,N+1 = CL

CL

In Out

1 2 N
Cg,1

❑ Delay for the j-th inverter stage:

❑ Total delay of the chain:

EE141

❑ Each inverter should be sized up by the same
factor f with respect to the preceding gate

❑ Therefore each stage has the same delay
❑ Given Cg,1 and CL

❑ Where F represents the overall fan-out of the circuit
❑ The minimal delay through the chain is

Optimum Delay and Number of Stages

 15

f = N CL /Cg,1 = N F

tp = Ntp0(1 + N F /γ)

EE141

Example

CL= 8 C1

In Out

C1
1 f f 2

CL/C1 has to be evenly distributed across N = 3 stages:

 16

EE141

Delay Optimization
❑ Now assume given:
▪ The size of the first inverter
▪ The size of the load that needs to be driven

❑ Minimize delay by finding optimal number
and sizes of gates

❑ So, need to find N that minimizes:

 17

tp = Ntp0(1 + N F /γ), F = CL /Cg,1

EE141

Finding optimal fanout per stage

 18

tp = Ntp0(1 + N F /γ), F = CL /Cg,1

❑ Differentiate w.r.t. N and set = 0:

γ + N F −
N F lnF

N
= 0

⇒ f = e(1+γ/f)

❑ Closed form only if : γ = 0 ⇒ N = ln(F), f = e

EE141

Optimum Effective Fanout f

❑ Optimum f for given process defined by γ

0 0.5 1 1.5 2 2.5 32.5

3

3.5

4

4.5

5

γ

f op
t

fopt = 3.6
for γ = 1

e

 19

f = e(1+γ/f)

EE141

In Practice: Plot of Total Delay

❑ Why the shape?
❑ Curves very flat for f > 2

▪ Simplest/most common choice: f = 4

[Hodges, p.281]

 20

EE141

Normalized Delay As a Function of F

[Rabaey: page 210]

(γ = 1)

 21

tp = Ntp0(1 + N F /γ), F = CL /Cg,1

Timing Closure: Searching for and beating down
the critical path1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Must consider all connected register pairs,
paths, plus from input to register, plus register

to output.

?

• Design tools help in the search.
• Synthesis tools work to meet clock

constraint, report delays on paths,
– Special static timing analyzers accept a

design netlist and report path delays,
– and, of course, simulators can be used to

determine timing performance.

Tools that are expected to do something about the
timing behavior (such as synthesizers), also include

provisions for specifying input arrival times (relative
to the clock), and output requirements (set-up times

of next stage).
�22

Timing Analysis, real example

From “The circuit and physical design of the POWER4 microprocessor”, IBM J Res and Dev, 46:1, Jan 2002, J.D. Warnock et al.

netlist. Of these, 1 2 1 7 1 3 were top-level chip global nets,
and 2 1 7 1 1 were processor-core-level global nets. Against
this model 3 .5 million setup checks were performed in late
mode at points where clock signals met data signals in
latches or dynamic circuits. The total number of timing
checks of all types performed in each chip run was
9 .8 million. Depending on the configuration of the timing
run and the mix of actual versus estimated design data,
the amount of real memory required was in the range
of 1 2 GB to 1 4 GB, with run times of about 5 to 6 hours
to the start of timing-report generation on an RS/6 0 0 0 *
Model S8 0 configured with 6 4 GB of real memory.
Approximately half of this time was taken up by reading
in the netlist, timing rules, and extracted RC networks, as

well as building and initializing the internal data structures
for the timing model. The actual static timing analysis
typically took 2 .5 –3 hours. Generation of the entire
complement of reports and analysis required an additional
5 to 6 hours to complete. A total of 1 .9 GB of timing
reports and analysis were generated from each chip timing
run. This data was broken down, analyzed, and organized
by processor core and GPS, individual unit, and, in the
case of timing contracts, by unit and macro. This was one
component of the 2 4 -hour-turnaround time achieved for
the chip-integration design cycle. Figure 26 shows the
results of iterating this process: A histogram of the final
nominal path delays obtained from static timing for the
POWER4 processor.

The POWER4 design includes LBIST and ABIST
(Logic/Array Built-In Self-Test) capability to enable full-
frequency ac testing of the logic and arrays. Such testing
on pre-final POWER4 chips revealed that several circuit
macros ran slower than predicted from static timing. The
speed of the critical paths in these macros was increased
in the final design. Typical fast ac LBIST laboratory test
results measured on POWER4 after these paths were
improved are shown in Figure 27.

Summary
The 1 7 4 -million-transistor !1 .3 -GHz POWER4 chip,
containing two microprocessor cores and an on-chip
memory subsystem, is a large, complex, high-frequency
chip designed by a multi-site design team. The
performance and schedule goals set at the beginning of
the project were met successfully. This paper describes
the circuit and physical design of POWER4 , emphasizing
aspects that were important to the project’s success in the
areas of design methodology, clock distribution, circuits,
power, integration, and timing.

Figure 25

POWER4 timing flow. This process was iterated daily during the
physical design phase to close timing.

VIM

Timer files ReportsAsserts

Spice

Spice

GL/1

Reports

< 12 hr

< 12 hr

< 12 hr

< 48 hr

< 24 hr

Non-uplift
timing

Noise
impact
on timing

Uplift
analysis

Capacitance
adjust

Chipbench /
EinsTimer

Chipbench /
EinsTimer

Extraction

Core or chip
wiring

Analysis/update
(wires, buffers)

Notes:
• Executed 2– 3 months
 prior to tape-out
• Fully extracted data
 from routed designs
 • Hierarchical extraction
• Custom logic handled
 separately
 • Dracula
 • Harmony
• Extraction done for
 • Early
 • Late

Extracted units
 (flat or hierarchical)
Incrementally
 extracted RLMs
Custom NDRs
VIMs

Figure 26

Histogram of the POWER4 processor path delays.

!40 !20 0 20 40 6 0 80 100 120 140 16 0 180 200 220 240 26 0 280
Timing slack (ps)

L
at

e-
m

od
e

tim
in

g
ch

ec
ks

 (
th

ou
sa

nd
s)

0

50

100

150

200

IBM J. RES. & DEV. VOL. 4 6 NO. 1 JANUARY 2 0 0 2 J. D. WARNOCK ET AL.

47

Most paths have hundreds of
picoseconds to spare.

The critical path

�23

Timing Optimization
As an ASIC/FPGA designer you get to choose:
‣ The algorithm
‣ The Microarchitecture (block diagram)
‣ The RTL description of the CL blocks

(number of levels of logic)
‣ Where to place registers and memory (the

pipelining)
‣ Overall floorplan and relative placement

of blocks
�24

Post-Placement C-slow Retiming for the Xilinx Virtex
FPGA

Nicholas Weaver
⇤

UC Berkeley
Berkeley, CA

Yury Markovskiy
UC Berkeley
Berkeley, CA

Yatish Patel
UC Berkeley
Berkeley, CA

John Wawrzynek
UC Berkeley
Berkeley, CA

ABSTRACT

C-slow retiming is a process of automatically increas-
ing the throughput of a design by enabling fine grained
pipelining of problems with feedback loops. This transfor-
mation is especially appropriate when applied to FPGA
designs because of the large number of available registers.
To demonstrate and evaluate the benefits of C-slow re-
timing, we constructed an automatic tool which modifies
designs targeting the Xilinx Virtex family of FPGAs. Ap-
plying our tool to three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1
synthesized microprocessor core, we were able to substan-
tially increase the total throughput. For some parameters,
throughput is e↵ectively doubled.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids—Automatic syn-

thesys

General Terms

Performance

Keywords

FPGA CAD, FPGA Optimization, Retiming, C-slow
Retiming

⇤Please address any correspondance to
nweaver@cs.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03, February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

1. Introduction

Leiserson’s retiming algorithm[7] o↵ers a polynomial
time algorithm to optimize the clock period on arbitrary
synchronous circuits without changing circuit semantics.
Although a powerful and e�cient transformation that has
been employed in experimental tools[10][2] and commercial
synthesis tools[13][14], it o↵ers only a minor clock period
improvement for a well constructed design, as many de-
signs have their critical path on a single cycle feedback
loop and can’t benefit from retiming.

Also proposed by Leiserson et al to meet the constraints
of systolic computation, is C-slow retiming.1 In C-slow re-
timing, each design register is first replaced with C regis-
ters before retiming. This transformation modifies the de-
sign semantics so that C separate streams of computation
are distributed through the pipeline, greatly increasing the
aggregate throughput at the cost of additional latency and
flip flops. This can automatically accelerate computations
containing feedback loops by adding more flip-flops that
retiming can then move moved around the critical path.

The e↵ect of C-slow retiming is to enable pipelining of
the critical path, even in the presence of feedback loops. To
take advantage of this increased throughput however, there
needs to be su�cient task level parallelism. This process
will slow any single task but the aggregate throughput will
be increased by interleaving the resulting computation.

This process works very well on many FPGA archite-
cures as these architectures tend to have a balanced ra-
tio of logic elements to registers, while most user designs
contain a considerably higher percentage of logic. Addi-
tionaly, many architectures allow the registers to be used
independently of the logic in a logic block.

We have constructed a prototype C-slow retiming tool
that modifies designs targeting the Xilinx Virtex family
of FPGAs. The tool operates after placement: converting
every design register to C separate registers before apply-
ing Leiserson’s retiming algorithm to minimize the clock
period. New registers are allocated by scavenging unused
array resources. The resulting design is then returned to
Xilinx tools for routing, timing analysis, and bitfile gener-
ation.

We have selected three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1

1This was originally defined to meet systolic slowdown re-
quirements.

How to retime logic

Post-Placement C-slow Retiming for the Xilinx Virtex
FPGA

Nicholas Weaver
⇤

UC Berkeley
Berkeley, CA

Yury Markovskiy
UC Berkeley
Berkeley, CA

Yatish Patel
UC Berkeley
Berkeley, CA

John Wawrzynek
UC Berkeley
Berkeley, CA

ABSTRACT

C-slow retiming is a process of automatically increas-
ing the throughput of a design by enabling fine grained
pipelining of problems with feedback loops. This transfor-
mation is especially appropriate when applied to FPGA
designs because of the large number of available registers.
To demonstrate and evaluate the benefits of C-slow re-
timing, we constructed an automatic tool which modifies
designs targeting the Xilinx Virtex family of FPGAs. Ap-
plying our tool to three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1
synthesized microprocessor core, we were able to substan-
tially increase the total throughput. For some parameters,
throughput is e↵ectively doubled.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids—Automatic syn-

thesys

General Terms

Performance

Keywords

FPGA CAD, FPGA Optimization, Retiming, C-slow
Retiming

⇤Please address any correspondance to
nweaver@cs.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03, February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

1. Introduction

Leiserson’s retiming algorithm[7] o↵ers a polynomial
time algorithm to optimize the clock period on arbitrary
synchronous circuits without changing circuit semantics.
Although a powerful and e�cient transformation that has
been employed in experimental tools[10][2] and commercial
synthesis tools[13][14], it o↵ers only a minor clock period
improvement for a well constructed design, as many de-
signs have their critical path on a single cycle feedback
loop and can’t benefit from retiming.

Also proposed by Leiserson et al to meet the constraints
of systolic computation, is C-slow retiming.1 In C-slow re-
timing, each design register is first replaced with C regis-
ters before retiming. This transformation modifies the de-
sign semantics so that C separate streams of computation
are distributed through the pipeline, greatly increasing the
aggregate throughput at the cost of additional latency and
flip flops. This can automatically accelerate computations
containing feedback loops by adding more flip-flops that
retiming can then move moved around the critical path.

The e↵ect of C-slow retiming is to enable pipelining of
the critical path, even in the presence of feedback loops. To
take advantage of this increased throughput however, there
needs to be su�cient task level parallelism. This process
will slow any single task but the aggregate throughput will
be increased by interleaving the resulting computation.

This process works very well on many FPGA archite-
cures as these architectures tend to have a balanced ra-
tio of logic elements to registers, while most user designs
contain a considerably higher percentage of logic. Addi-
tionaly, many architectures allow the registers to be used
independently of the logic in a logic block.

We have constructed a prototype C-slow retiming tool
that modifies designs targeting the Xilinx Virtex family
of FPGAs. The tool operates after placement: converting
every design register to C separate registers before apply-
ing Leiserson’s retiming algorithm to minimize the clock
period. New registers are allocated by scavenging unused
array resources. The resulting design is then returned to
Xilinx tools for routing, timing analysis, and bitfile gener-
ation.

We have selected three benchmarks: AES encryption,
Smith/Waterman sequence matching, and the LEON 1

1This was originally defined to meet systolic slowdown re-
quirements.

IN OUT

1 1

1 1 22

Figure 1: A small graph before retiming. The

nodes represent logic delays, with the inputs and

outputs passing through mandatory, fixed regis-

ters. The critical path is 5.

microprocessor core, for which we can envision scenar-
ios where ample task-level parallelism exists. The AES
and Smith/Watherman benchmarks were also C-slowed by
hand, enabling us to evaluate how well our automated tech-
niques compare with careful, hand designed implementa-
tions that accomplishes the same goals.

The LEON 1 processor is a significantly larger synthe-
sized design. Although it seems unusual, there is su�cient
task level parallelism to C-slow a microprocessor, as each
stream of execution can be viewed as a separate task. The
resulting C-slowed design behaves like a multithreaded sys-
tem, with each virtual processor running slower but o↵er-
ing a higher total throughput.

This prototype demonstrates significant speedups on
all 3 benchmarks, nearly doubling the throughput for the
proper parameters. On the AES and Smith/Waterman
benchmarks, these automated results compare favorably
with careful hand-constructed implementations that were
the result of manual C-slowing and pipelining.

In the remainder of the paper, we first discuss the se-
mantic restrictions and changes that retiming and C-slow
retiming impose on a design, the details of the retiming
algorithm, and the use of the target architecture. Fol-
lowing the discussion of C-slow retiming, we describe our
implementation of an automatic retiming tool. Then we
describe the structure of all three benchmarks and present
the results of applying our tool.

2. Conventional Retiming

Leiserson’s retiming treats a synchronous circuit as a
directed graph, with delays on the nodes representing com-
bination delays and weights on the edges representing reg-
isters in the design. An additional node represents the
external world, with appropriate edges added to account
for all the I/Os. Two matrixes are calculated, W and D,
that represent the number of registers and critical path
between every pair of nodes in the graph. Each node also
has a lag value r that is calculated by the algorithm and
used to change the number of registers on any given edge.
Conventional retiming does not change the design seman-
tics: all input and output timings remain unchanged, while
imposing minor design constraints on the use of FPGA fea-
tures. More details and formal proofs of correctness can
be found in Leiserson’s original paper[7].

In order to determine whether a critical path P can be
achieved, the retiming algorithm creates a series of con-

IN OUT

1 1

1 1 22

Figure 2: The example in Figure 2 after retiming.

The critical path is reduced from 5 to 4.

straints to calculate the lag on each node. All these con-
strains are of the form x � y k that can be solved in
O(n2) time by using the Bellman/Ford shortest path al-
gorithm. The primary constraints insure correctness: no
edge will have a negative number of registers while every
cycle will always contain the original number of registers.
All IO passes through an intermediate node insuring that
input and output timings do not change. These constraints
can be modified to insure that a particular line will contain
no registers or a mandatory minimum number of registers
to meet architectural constraints.

A second set of constraints attempt to insure that every
path longer than the critical path will contain at least one
register, by creating an additional constraint for every path
longer than the critical path. The actual constraints are
summarized in Table 1.

This process is iterated to find the minimum critical
path that meets all the constraints. The lag calculated by
these constraints can then be used to change the design
to meet this critical path. For each edge, a new register
weight w

0 is calculated, with w
0(e) = w(e)� r(u) + r(v).

An example of how retiming a↵ects a simple design can
be seen in Figures 2 and 2. The initial design has a critical
path of 5, while after retiming the critical path is reduced
to 4. During this process, the number of registers is in-
creased, yet the number of registers on every cycle and
the path from input to output remain unchanged. Since
the feedback loop has only a single register and a delay of
4, it is impossible to further improve the performance by
retiming.

Retiming in this form imposes only minimal design lim-
itations: there can be no asynchronous resets or similar
elements, as the retiming technique only applies to syn-
chronous circuits. A synchronous global reset imposes too
many constraints to allow retiming unless initial conditions
are calculated and the global reset itself is now excluded
from retiming purposes. Local synchronous resets and en-
ables just produce small, self loops that have no e↵ect on
the correct operation of the algorithm.

Most other design features can be accommodated by
simply adding appropriate constraints. As an example, all
tristated lines can’t have registers applied to them, while
mandatory elements such as those seen in synchronous
memories can be easily accommodated by mandating reg-
isters on the appropriate nets.

Memories themselves can be retimed like any other el-
ement in the design, with dual ported memories treated
as a single node for retiming purposes. Memories that
are synthesized with a negative clock edge (to create the
design illusion of asynchronous memories) can either be

Circles are combinational
logic, labelled with delays.

Critical path is 5.

We want to improve
it without changing
circuit semantics.

IN OUT

1 1

1 1 22

Figure 1: A small graph before retiming. The

nodes represent logic delays, with the inputs and

outputs passing through mandatory, fixed regis-

ters. The critical path is 5.

microprocessor core, for which we can envision scenar-
ios where ample task-level parallelism exists. The AES
and Smith/Watherman benchmarks were also C-slowed by
hand, enabling us to evaluate how well our automated tech-
niques compare with careful, hand designed implementa-
tions that accomplishes the same goals.

The LEON 1 processor is a significantly larger synthe-
sized design. Although it seems unusual, there is su�cient
task level parallelism to C-slow a microprocessor, as each
stream of execution can be viewed as a separate task. The
resulting C-slowed design behaves like a multithreaded sys-
tem, with each virtual processor running slower but o↵er-
ing a higher total throughput.

This prototype demonstrates significant speedups on
all 3 benchmarks, nearly doubling the throughput for the
proper parameters. On the AES and Smith/Waterman
benchmarks, these automated results compare favorably
with careful hand-constructed implementations that were
the result of manual C-slowing and pipelining.

In the remainder of the paper, we first discuss the se-
mantic restrictions and changes that retiming and C-slow
retiming impose on a design, the details of the retiming
algorithm, and the use of the target architecture. Fol-
lowing the discussion of C-slow retiming, we describe our
implementation of an automatic retiming tool. Then we
describe the structure of all three benchmarks and present
the results of applying our tool.

2. Conventional Retiming

Leiserson’s retiming treats a synchronous circuit as a
directed graph, with delays on the nodes representing com-
bination delays and weights on the edges representing reg-
isters in the design. An additional node represents the
external world, with appropriate edges added to account
for all the I/Os. Two matrixes are calculated, W and D,
that represent the number of registers and critical path
between every pair of nodes in the graph. Each node also
has a lag value r that is calculated by the algorithm and
used to change the number of registers on any given edge.
Conventional retiming does not change the design seman-
tics: all input and output timings remain unchanged, while
imposing minor design constraints on the use of FPGA fea-
tures. More details and formal proofs of correctness can
be found in Leiserson’s original paper[7].

In order to determine whether a critical path P can be
achieved, the retiming algorithm creates a series of con-

IN OUT

1 1

1 1 22

Figure 2: The example in Figure 2 after retiming.

The critical path is reduced from 5 to 4.

straints to calculate the lag on each node. All these con-
strains are of the form x � y k that can be solved in
O(n2) time by using the Bellman/Ford shortest path al-
gorithm. The primary constraints insure correctness: no
edge will have a negative number of registers while every
cycle will always contain the original number of registers.
All IO passes through an intermediate node insuring that
input and output timings do not change. These constraints
can be modified to insure that a particular line will contain
no registers or a mandatory minimum number of registers
to meet architectural constraints.

A second set of constraints attempt to insure that every
path longer than the critical path will contain at least one
register, by creating an additional constraint for every path
longer than the critical path. The actual constraints are
summarized in Table 1.

This process is iterated to find the minimum critical
path that meets all the constraints. The lag calculated by
these constraints can then be used to change the design
to meet this critical path. For each edge, a new register
weight w

0 is calculated, with w
0(e) = w(e)� r(u) + r(v).

An example of how retiming a↵ects a simple design can
be seen in Figures 2 and 2. The initial design has a critical
path of 5, while after retiming the critical path is reduced
to 4. During this process, the number of registers is in-
creased, yet the number of registers on every cycle and
the path from input to output remain unchanged. Since
the feedback loop has only a single register and a delay of
4, it is impossible to further improve the performance by
retiming.

Retiming in this form imposes only minimal design lim-
itations: there can be no asynchronous resets or similar
elements, as the retiming technique only applies to syn-
chronous circuits. A synchronous global reset imposes too
many constraints to allow retiming unless initial conditions
are calculated and the global reset itself is now excluded
from retiming purposes. Local synchronous resets and en-
ables just produce small, self loops that have no e↵ect on
the correct operation of the algorithm.

Most other design features can be accommodated by
simply adding appropriate constraints. As an example, all
tristated lines can’t have registers applied to them, while
mandatory elements such as those seen in synchronous
memories can be easily accommodated by mandating reg-
isters on the appropriate nets.

Memories themselves can be retimed like any other el-
ement in the design, with dual ported memories treated
as a single node for retiming purposes. Memories that
are synthesized with a negative clock edge (to create the
design illusion of asynchronous memories) can either be

Add a register, move
one circle.
Performance
improves by 20%.

Logic Synthesis tools can do this in
simple cases.

 25

1600 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 11, NOVEMBER 2001

Fig. 1. Process SEM cross section.

The process was raised from [1] to limit standby power.

Circuit design and architectural pipelining ensure low voltage

performance and functionality. To further limit standby current

in handheld ASSPs, a longer poly target takes advantage of the

versus dependence and source-to-body bias is used

to electrically limit transistor in standby mode. All core

nMOS and pMOS transistors utilize separate source and bulk

connections to support this. The process includes cobalt disili-

cide gates and diffusions. Low source and drain capacitance, as

well as 3-nm gate-oxide thickness, allow high performance and

low-voltage operation.

III. ARCHITECTURE

The microprocessor contains 32-kB instruction and data

caches as well as an eight-entry coalescing writeback buffer.

The instruction and data cache fill buffers have two and four

entries, respectively. The data cache supports hit-under-miss

operation and lines may be locked to allow SRAM-like oper-

ation. Thirty-two-entry fully associative translation lookaside

buffers (TLBs) that support multiple page sizes are provided

for both caches. TLB entries may also be locked. A 128-entry

branch target buffer improves branch performance a pipeline

deeper than earlier high-performance ARM designs [2], [3].

A. Pipeline Organization

To obtain high performance, the microprocessor core utilizes

a simple scalar pipeline and a high-frequency clock. In addition

to avoiding the potential power waste of a superscalar approach,

functional design and validation complexity is decreased at the

expense of circuit design effort. To avoid circuit design issues,

the pipeline partitioning balances the workload and ensures that

no one pipeline stage is tight. The main integer pipeline is seven

stages, memory operations follow an eight-stage pipeline, and

when operating in thumb mode an extra pipe stage is inserted

after the last fetch stage to convert thumb instructions into ARM

instructions. Since thumb mode instructions [11] are 16 b, two

instructions are fetched in parallel while executing thumb in-

structions. A simplified diagram of the processor pipeline is

Fig. 2. Microprocessor pipeline organization.

shown in Fig. 2, where the state boundaries are indicated by

gray. Features that allow the microarchitecture to achieve high

speed are as follows.

The shifter and ALU reside in separate stages. The ARM in-

struction set allows a shift followed by an ALU operation in a

single instruction. Previous implementations limited frequency

by having the shift and ALU in a single stage. Splitting this op-

eration reduces the critical ALU bypass path by approximately

1/3. The extra pipeline hazard introduced when an instruction is

immediately followed by one requiring that the result be shifted

is infrequent.

Decoupled Instruction Fetch.A two-instruction deep queue is

implemented between the second fetch and instruction decode

pipe stages. This allows stalls generated later in the pipe to be

deferred by one or more cycles in the earlier pipe stages, thereby

allowing instruction fetches to proceed when the pipe is stalled,

and also relieves stall speed paths in the instruction fetch and

branch prediction units.

Deferred register dependency stalls. While register depen-

dencies are checked in the RF stage, stalls due to these hazards

are deferred until the X1 stage. All the necessary operands are

then captured from result-forwarding busses as the results are

returned to the register file.

One of the major goals of the design was to minimize the en-

ergy consumed to complete a given task. Conventional wisdom

has been that shorter pipelines are more efficient due to re-

Floorplaning: essential to meet timing.

(Intel XScale 80200)

 26

EECS151, UC Berkeley Sp18

Timing Analysis Tools
‣ Static Timing Analysis: Tools use delay models for

gates and interconnect. Traces through circuit paths.
‣ Cell delay model capture
‣ For each input/output pair, internal delay (output

load independent)
‣ output dependent delay

‣ Standalone tools (PrimeTime) and part of logic
synthesis.

‣ Back-annotation takes information from results of
place and route to improve accuracy of timing analysis.

‣ DC in “topographical mode” uses preliminary layout
information to model interconnect parasitics.
‣ Prior versions used a simple fan-out model of gate

loading.

delay

output load

 27

EECS151, UC Berkeley Sp18

Conclusion
‣ Timing Optimization: You start with a target on clock

period. What control do you have?
‣ Biggest effect is RTL manipulation.
‣ i.e., how much logic to put in each pipeline stage.
‣ We will be talking later about how to manipulate RTL

for better timing results.
‣ In most cases, the tools will do a good job at logic/circuit

level:
‣ Logic level manipulation
‣ Transistor sizing
‣ Buffer insertion
‣ But some cases may be difficult and you may need to

help
‣ The tools will need some help at the floorpan and layout

 28

