
EECS 151/251A FPGA Lab

Lab 6: FIFOs, UART Piano

Prof. John Wawrzynek
TAs: Christopher Yarp, Arya Reais-Parsi

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

Contents

1 Introduction 1
1.1 Copying Files From Previous Labs . 2

2 Building a Synchronous FIFO 3
2.1 FIFO Functionality . 3
2.2 FIFO Interface . 4
2.3 FIFO Timing . 4
2.4 FIFO Testing . 5

3 Using the Xilinx FIFO Generator 6

4 Finishing the I2S Controller 9
4.1 Modify your I2S controller testbench . 10

5 Building the Piano FSM 10
5.1 Modify z1top . 11

6 Writing a System-Level Testbench 12

7 FPGA Testing 12

8 (Optional) 12

9 Checkoff Tasks 13

1 Introduction

In this lab, you will integrate the components you created in Lab 5 (UART and incomplete I2S
controller). You will begin by building a synchronous FIFO and verifying its functionality using a

1

block-level testbench. You will then finish your I2S controller to emit a signal using the FIFO as
its PCM data source. Finally, you will create some logic that integrates all these components to
form a “piano”.

Here is an overview of the entire system in z1top we are going to build (except the asynchronous
FIFO). You may find it useful to refer to this block diagram while doing this lab.

button_parser.v

synchronizer

debouncer

edge_detector

uart.v

FPGA_SERIAL_TX

data_in
data_in_valid
data_in_ready

uart_transmitter

FPGA_SERIAL_RX
uart_receiver

din

wr_en

full

logic
data_out
data_out_valid
data_out_ready

fifo.v

wr_ptr

rd_ptr
RAM

Xilinx Coregen FIFO

SDIN

i2s_controller.v

logic

GPIO_BUTTONS

Piano FSM
SCLK

LRCK

MCLK

aud_pwm

data
valid
ready

In this lab, you will be building the FIFOs, modifying your I2S controller to use one, and de-
signing the piano FSM. You will then construct a system-level testbench to verify functionality in
simulation.

1.1 Copying Files From Previous Labs

You will need the following files from previous labs:

uart.v

uart_receiver.v

uart_transmitter.v

2

tone_generator.v

synchronizer.v

debouncer.v

edge_detector.v

i2s_controller.v

2 Building a Synchronous FIFO

A FIFO (first in, first out) data buffer is a circuit that has two interfaces: a read side and a write
side. The FIFO we will build in this section will have both the read and write side clocked by the
same clock; this circuit is known as a synchronous FIFO.

2.1 FIFO Functionality

A FIFO is implemented with a circular buffer (2D reg) and two pointers: a read pointer and a
write pointer. These pointers address the buffer inside the FIFO, and they indicate where the next
read or write operation should be performed. When the FIFO is reset, these pointers are set to the
same value.

When a write to the FIFO is performed, the write pointer increments and the data provided to
the FIFO is written to the buffer. When a read from the FIFO is performed, the read pointer
increments, and the data present at the read pointer’s location is sent out of the FIFO.

A comparison between the values of the read and write pointers indicate whether the FIFO is full
or empty. You can choose to implement this logic as you please. The Electronics section of the
FIFO Wikipedia article will likely aid you in creating your FIFO.

Here is a block diagram of the FIFO you should create from page 103 of the Xilinx FIFO IP Manual.

The interface of our FIFO will contain a subset of the signals enumerated in the diagram above.

3

https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf

2.2 FIFO Interface

Take a look at the FIFO skeleton in fifo.v.

Our FIFO is parameterized by these parameters:

• data_width - This parameter represents the number of bits per entry in the FIFO.

• fifo_depth - This parameter represents the number of entries in the FIFO.

• addr_width - This parameter is automatically filled by the log2 macro to be the number of
bits for your read and write pointers.

The common FIFO signals are:

• clk - Clock used for both read and write interfaces of the FIFO.

• rst - Reset synchronous to the clock; should cause the read and write pointers to be reset.

The FIFO write interface consists of three signals:

• wr_en - When this signal is high, on the rising edge of the clock, the data on din will be
written to the FIFO.

• [data_width-1:0] din - The data to be written to the FIFO should be present on this net.

• full - When this signal is high, it indicates that the FIFO is full.

The FIFO read interface consists of three signals:

• rd_en - When this signal is high, on the rising edge of the clock, the FIFO should present
the data indexed by the read pointer on dout

• [data_width-1:0] dout - The data that was read from the FIFO after the rising edge on
which rd_en was asserted

• empty - When this signal is high, it indicates that the FIFO is empty.

2.3 FIFO Timing

The FIFO that you design should conform to the specs above. To further, clarify here are the read
and write timing diagrams from the Xilinx FIFO IP Manual. These diagrams can be found on
pages 105 and 107. Your FIFO should behave similarly.

4

https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator_ug175.pdf

Your FIFO doesn’t need to support the ALMOST_FULL, WR_ACK, or OVERFLOW signals on the write
interface and it doesn’t need to support the VALID, UNDERFLOW, or ALMOST_EMPTY signals on the
read interface.

2.4 FIFO Testing

We have provided a testbench for your synchronous FIFO which can be found in fifo_testbench.v.
This testbench can test either the synchronous or the asynchronous FIFO you will create later in
the project. To change which DUT is tested, comment out or reenable the defines at the top of the
testbench (SYNC_FIFO_TEST, ASYNC_FIFO_TEST).

You can test this in the Vivado Design Suite or with ModelSim through the sim directory, as in
previous labs.

The testbench we have provided performs the following test sequence, which you should understand
well.

1. Checks initial conditions after reset (FIFO not full and is empty)

2. Generates random data which will be used for testing

3. Pushes the data into the FIFO, and checks at every step that the FIFO is no longer empty

4. When the last piece of data has been pushed into the FIFO, it checks that the FIFO is not
empty and is full

5. Verifies that cycling the clock and trying to overflow the FIFO doesn’t cause any corruption
of data or corruption of the full and empty flags

6. Reads the data from the FIFO, and checks at every step that the FIFO is no longer full

7. When the last piece of data has been read from the FIFO, it checks that the FIFO is not full
and is empty

8. Verifies that cycling the clock and trying to underflow the FIFO doesn’t cause any corruption
of data or corruption of the full and empty flags

9. Checks that the data read from the FIFO matches the data that was originally written to the
FIFO

10. Prints out test debug info

This testbench tests one particular way of interfacing with the FIFO. Of course, it is not compre-
hensive, and there are conditions and access patterns it does not test. We recommend adding some
more tests to this testbench to verify your FIFO performs as expected. Here are a few tests to try:

• Several times in a row, write to, then read from the FIFO with no clock cycle delays. This
will test the FIFO in a way that it’s likely to be used when buffering user I/O.

• Try writing and reading from the FIFO on the same cycle. This will require you to use
fork/join to run two threads in parallel. Make sure that no data gets corrupted.

5

3 Using the Xilinx FIFO Generator

Up to this point, you have been using modules that were either written by yourself from scratch
or were provided to you by the teaching staff. In practice, there is an alternative for modules that
are either extremely common or heavily specialized: IP Cores. IP (Intellectual Property) cores
are hardware modules that have been written by third parties to be used in a variety of customer
designs. IP Cores can range from very common components, such as FIFOs, to advanced and
specialized components, such as AES Encryptors/Decryptors. The goal behind IP cores is similar
to vendor optimized libraries in software: they accelerate development by allowing the design reuse
of a component written by an expert third party.

In this lab section, you will be creating an instance of the FIFO IP core provided by Xilinx.

First, you will need to open the FIFO Generator IP to configure your instance:

1. In the Flow Navigator side pane, click on Project Manager → IP Catalog

2. In the IP Catalog window, locate the FIFO Generator under Memories & Storage Elements
→ FIFOs

3. Double click on FIFO Generator

This will open an interface for customizing your FIFO.

6

The first thing you should do is give your FIFO a name. Enter this into the Component Name field
at the top of the Customize IP window.

The Xilinx provided FIFO generator is written to work with many design. As such, it offers many
different configurations options. For our purposes, we are interested in instantiating an 8 bit wide
“First-Word Fall-Through” FIFO. “First-Word Fall-Through” means that the data at the head
of the FIFO is immediately presented on the data output lines. By treating the empty signal as
!valid and read_en as ready, the read interface of a First-Word Fall-Through FIFO conforms to
the ready/valid semantic we have been using in other modules.

We also need to select the depth of our FIFO. For this example, let’s say that our FIFO is 256
entries deep.

Now, let’s configure the FIFO. In the Basic tab:

1. Select Native as the Interface Type1

2. Select Common Clock Block RAM as the FIFO Implementation2

Under the Native Ports tab:

1. Select First-Word Fall-Through as the Read Mode

2. Set the Write Width to 8

3. Set the Write Depth to 256

4. Set the Read Width to 8

5. Make sure Reset Pin is checked and Reset Type is Synchronous Reset

1We could have also selected AXI Stream but the native interface provides us with some additional flexibility. We
are also not using all of the features of AXI Stream.

2We could also create a clock crossing FIFO by selecting Independent Clocks Block RAM. This would create
separate clock inputs for the write and read sides of the FIFO. This allows us to easily pass data between clock
domains.

7

Under the Status Flags tab:

1. Check Valid Flag and select Active High

If you open the Summary tab, your Customize IP window should look close to this:

Once you are satisfied with your configuration, click OK. Vivado will then prompt you with a
window asking how you would like to generate the IP core.

You have 2 main options: Global or Out of Context. Global will create the FIFO configuration
files and generate a template file. However, the FIFO will be synthesized as part of your design’s
overall synthesis task. Out of context runs allow synthesis to be performed for the FIFO separately.
The result of this synthsis is then used when synthesizing your overall design. The advantage of

8

out of context runs is that the FIFO does not need to be re-synthesized each time your design is
re-synthesized.

Select Out of context per IP and click Generate.

Vivado will now begin the out of context run for the FIFO. You can observe the progress by
clicking on the Log tab in the bottom panel. Note that there is now a sub-pane displaying 2 logs
for synthesis: synth 1 and one for fifo generator 0 synth 1.

The FIFO should also appear in your design hierarchy.

You should now be able to use the FIFO in your design. Durring the generation process, Vivado
creates a template file which shows how to integrate the FIFO into your design. If you named
your FIFO fifo generator 0 synth 1, the template will be in lab6/lab6.srcs/sources_1/ip/fifo_

generator_0/fifo_generator_0.veo.

Also, if you are using git, you should add the new files in lab6/lab6.srcs/sources_1/ip.

4 Finishing the I2S Controller

Now that you can generate the various clocking signals for the I2S controller, it’s time to extend it
to accept and output actual PCM data. We need to do this before we can plug it into the FSM!

To make things simple, we will initially use the I2S controller as a glorified PWM output with
the same PWM signal you used to drive audio out in labs 3 and 4. The “high” PWM signal will
correspond to the maximum PCM value for a given sample width (bit depth). The “low” PWM
signal will correspond to the minimum PCM value. Recalling your reading in Lab 6, the I2S chip

9

lab6/lab6.srcs/sources_1/ip/fifo_generator_0/fifo_generator_0.veo
lab6/lab6.srcs/sources_1/ip/fifo_generator_0/fifo_generator_0.veo
lab6/lab6.srcs/sources_1/ip

accepts twos-complement-signed PCM with our choice of bit width, so if our sample width was 20
bits:

• the maximum PCM value would be 0x7FFFF;

• the minimum PCM value would be 0x80000.

We need to add a data input bus to connect to the Piano FSM.

Modify your I2S controller to accept one piece of data from the Piano FSM for each frame. Re-
member that in the I2S protocol, frames are sent starting from the second bit clock period after
each left-right clock transition. (Refer to the Lab 6 resources if you need.). A two bit ready signal
and a two bit valid signal are provided in the template for the I2S module. One is for the left
channel while the other is for the right channel.

You are not required to implement the ability for the I2S controller to buffer several PCM values
to be sent out. Since the I2S must constantly send serial audio data, its opportunities for accepting
new PCM values are limited. Remember that, as the I2S controller author, you are able to bring
the ready signal high whenever you can accept new data and are also able to bring it low when
you can no longer accept data. In the case when no valid PCM data is available when you need it
during frame transmission, you should continue sending the last value that you had received. You
should then check for new valid data on the next frame.

4.1 Modify your I2S controller testbench

Copy over the I2S controller testbench you used to verify the clock waveforms in Lab 6.

Modify the I2S controller testbench by sending data to it using the system_clock in the initial

block. Then execute the testbench again, and verify that your I2S controller is able to properly
interface with the piano FSM. You may have to modify the default parameter values.

5 Building the Piano FSM

Now we will design the logic that interfaces the FIFOs coming from the UART and the async FIFO
that provides data for the I2S controller. This module is the “Piano FSM” in the block diagram in
the lab intro.

The skeleton for the piano_fsm is provided in piano_fsm.v. You can see that it has access to the
UART transmitter FIFO, the UART receiver FIFO, and the I2S sample async FIFO. It also has
access to a reset signal coming from the board’s RESET and the other momentary buttons. This
FSM should implement the following functionality:

• When the UART receiver FIFO contains a character, the FSM should pull the character from
the FIFO and echo it back without modification through the UART transmitter FIFO.

• Once a character is pulled, its corresponding tone_switch_period should be read from the
supplied piano_scale_rom.v.

10

• For a given amount of time (note_length), the tone should be played by sending samples of
the tone (at 44.1, 48, or 88.2 kHz) into the I2S controller

• The note_length should default to 1/5th of a second, and can be changed by a fixed amount
with the the board’s push buttons. This should be similar to the tempo changing you imple-
mented in the music_streamer.

• Through doing all of this, your FSM should take care to ensure that if a FIFO is full, that it
waits until it isn’t full before pushing through data.

• If the UART receiver FIFO is empty, the I2S controller can be passed a constant value (like 0)
for every sample or not not passed anything at all. The audio_pwm output shouldn’t oscillate
if there’s nothing to play.

• The audio_pwm output of this FSM connects directly to the mono audio out port on the
Pynq-Z1 board. It should be driven with the square wave that’s playing through the I2S
controller.

You don’t need to design the piano_fsm as an explicit FSM with states; the design is entirely up
to you.

A ROM containing mappings from ASCII character codes to the tone_switch_period of the note
to be played can be found in src/piano_scale_rom.v. If you wish to re-generate this file, use
these commands:

cd lab6

python scripts/piano_scale_generator.py scale.txt

python scripts/rom_generator.py scale.txt src/piano_scale_rom.v 256 24

You will then have to modify piano_scale_rom.v to use the module name piano_scale_rom.

A possible implementation of this module would be to include an instance of your tone_generator,
and sample its output at 48 kHz to send samples into the I2S sample FIFO. The details of the
implementation are all up to you.

It is possible that the UART receiver FIFO can fill up with samples so fast that the piano FSM
can’t keep up; similar overflow conditions are possible with other parts of this system. You don’t
need to concern yourself with detecting ’backpressure’ on the entire system and can just assume
that your FIFOs are large enough to buffer all the user input and audio output.

5.1 Modify z1top

Now open up z1top.v and modify it at the bottom to include the new modules you wrote. Wire
up the FIFOs and your piano FSM according to the block diagram in the lab intro. You will have
to add a few lines of logic (purple cloud) representing the bridge between the ready/valid interface
and the FIFO’s rd en, wr en / full, empty interface. For the interface between the Piano FSM and
the UART Transmitter, you should use the Xilinx First-Word Fall-Through FIFO you instantiated
earlier. Consult the Updated Xilinx FIFO IP Manual and refer to the the “AXI Interface FIFOs”
diagram and the “First-Word Fall-Through (FWFT)” section for information on how to interface
your FIFO with a ready/valid interface. Note that AXI Stream is a type of ready/valid interface.

11

https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v13_1/pg057-fifo-generator.pdf

Make sure that you parameterize your FIFOs properly so that they have the proper data_width.
You can make your FIFOs as deep as you want, but 8 is a good default depth.

6 Writing a System-Level Testbench

This design involves quite a few moving parts that communicate with each other. We want to
make sure that the complete integration of our system works as expected. To that end, you will
have to write a system-level testbench that stimulates the top-level of your design and observes the
top-level outputs to confirm correct behavior.

We have provided a template for a system testbench in system_testbench.v (it’s under lab6.srcs/sim_1).
It will be up to you to fill in the initial block to test all the parts of the piano.

To make the waveform shorter and easier to debug, it is suggested that you change your note_length
default value in the piano_fsm to something much smaller than 1/5th of a second, just for testing.

7 FPGA Testing

Generate a bitstream and program the FPGA as usual. Read the synthesis and implementation
reports to see if there are any unexpected warnings. You should watch out specifically for warnings
like “found x-bit latch” or “x signal unconnected” or “x signal assigned but never used”. If you see
that the synthesis tool inferred a latch, you should definitely fix that warning by completing any
if-elseif-else or case statements that don’t have a default signal assignment. The other 2 warning
types are dependent on your design and you should ignore them only if you know they are expected.

Once you put your design on the FPGA you can send data to the on-chip UART by using
screen $SERIALTTY 115200. You can reset your design by pressing your RESET button. Use
the slide SWITCHES to turn on your design. The last switch will turn on the AUDIO_PWM output, and
the I2S output is on by default.

You also should be able to use the remaining buttons to change the note_length of your piano.
You should test the case where you make the note_length long, and fill up your UART FIFO by
typing really fast. Then watch your FIFO drain slowly as each note is played for note_length

time.

8 (Optional)

• Implement different output waveforms rather than just a square wave. You can choose to
implement a triangle or sawtooth or sine wave output and have the different waveform output
modes toggled with the remaining button. Only 1 extra waveform is needed for extra credit.

• Use the hex keypad as an alternative controller for the piano FSM.

12

• Implement a partial ADSR (attack, delay, sustain, release) envelope of your output wave-
forms. Here is a reference link https://en.wikipedia.org/wiki/Synthesizer#Attack_

Decay_Sustain_Release_.28ADSR.29_envelope. You only need to implement an attack
and release volume rolloff, and can use a single volume level for both the delay and sustain
portions of your waveform. You should include some way of changing the attack and release
periods (either through the rotary encoder or buttons).

• Any other ideas you have to make this FPGA design more like a “real” keyboard.

9 Checkoff Tasks

1. Show the system-level testbench you wrote and its methodology for testing your piano’s
functionality.

2. Show the output waveform of your testbench and explain how data moves through your
system.

3. Demonstrate the piano working on the FPGA both through the mono audio out and the I2S
controller’s headphone output.

4. Prove the existence of your UART RX and TX FIFOs by increasing the note_length and
filling the RX FIFO and seeing the data drain out slowly into your FSM.

Ackowlegement

This lab is the result of the work of many EECS151/251 GSIs over the years including:

• Sp12: James Parker, Daiwei Li, Shaoyi Cheng

• Sp13: Shaoyi Cheng, Vincent Lee

• Fa14: Simon Scott, Ian Juch

• Fa15: James Martin

• Fa16: Vighnesh Iyer

• Fa17: George Alexandrov, Vighnesh Iyer, Nathan Narevsky

• Sp18: Arya Reais-Parsi, Taehwan Kim

• Fa18: Ali Moin, George Alexandrov, Andy Zhou

13

https://en.wikipedia.org/wiki/Synthesizer#Attack_Decay_Sustain_Release_.28ADSR.29_envelope
https://en.wikipedia.org/wiki/Synthesizer#Attack_Decay_Sustain_Release_.28ADSR.29_envelope

	Introduction
	Copying Files From Previous Labs

	Building a Synchronous FIFO
	FIFO Functionality
	FIFO Interface
	FIFO Timing
	FIFO Testing

	Using the Xilinx FIFO Generator
	Finishing the I2S Controller
	Modify your I2S controller testbench

	Building the Piano FSM
	Modify z1top

	Writing a System-Level Testbench
	FPGA Testing
	(Optional)
	Checkoff Tasks

