
EECS 151/251A FPGA Lab

Lab 4: Debouncers, Finite State Machines, Synchronous Resets,

Synchronous RAM, Testbench Techniques, Hex Keypads

Prof. John Wawrzynek
TAs: Christopher Yarp, Arya Reais-Parsi

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

Contents

1 Before You Start This Lab 2

2 Lab Overview 2

3 Testbench Techniques 3

4 Synchronizer, Debouncer 4
4.1 Synchronizer . 4

4.1.1 Testing in Simulation . 5
4.2 Debouncer and Edge Detector . 6

4.2.1 Edge Detector . 7
4.2.2 Testing in Simulation . 8
4.2.3 Testing on the FPGA . 8

5 Synchronous Resets In Design and Simulation 9

6 Music Streamer Tempo Control 9

7 Music Streamer FSM 10

8 Optional Components 11
8.1 Shift Register (Optional) . 11

8.1.1 Testing in Simulation . 12
8.2 Hex Keypad (Optional) . 12

8.2.1 PMOD Expansion Headers . 12
8.2.2 Installing our keypad . 13
8.2.3 Developing a Decoder . 13

8.3 Building a Music Sequencer FSM (Optional) . 13

1

9 Checkoff 15

1 Before You Start This Lab

Before you proceed with the contents of this lab, we suggest that you review these documents that
will help you better understand some concepts we will be covering.

1. fpga labs fa19/resources/Verilog/verilog fsm.pdf

Goes over concepts of FSM in Verilog. Provides an example of implementing FSM’s in Verilog
and pitfalls to watch out for. This document also includes explanations of Verilog concepts
that we have covered in the previous labs, in lecture, and in discussion. If you are feeling
comfortable with the concepts mentioned, the document specifies sections you can skip to.

2. http://www.labbookpages.co.uk/electronics/debounce.html

Read the “What is Switch Bounce” section to get idea of why we need a debouncer circuit.
Read the “Digital Switch Debouncing” section to get a general overview of the circuit, its
parts, and their functions.

3. fpga labs fa19/resources/pmodkypd rm.pdf

Skim the reference manual for the hex keypad we will be using. See if you can roughly figure
out how it works given the manufacturer’s description.

2 Lab Overview

In this lab, we will

• learn about input conditioning circuits that make control signals from physical input devices,
like the buttons and switches we’ve been using up to now, more reliable;

• use board LEDs to confirm that our keypad input and conditioning circuits are working
correctly;

• discuss how to use synchronous resets to reset our circuits to a known initial state;

• create a basic FSM in the music_streamer that uses the buttons and hex keypad to change
states and alter the music playback;

• (optionally) learn how to interface with a hex-keypad, as made famous by security systems
in movies; and

• (optionally) extend our music_streamer into a sequencer.

Note: Now that you have your own private git repository, the procedure for getting the skeleton
files has changed from previous labs.

Run git pull staff master in your git cloned fpga_labs_sp19 directory to fetch the latest
skeleton files for this lab.

2

http://www.labbookpages.co.uk/electronics/debounce.html

3 Testbench Techniques

There are several testbenches included in this lab for your synchronizer, edge detector, shift register,
debouncer, and music streamer that introduce you to some useful Verilog testbench constructs.

• @(posedge <signal>) and @(negedge <signal>) - These are a different type of delay state-
ment from what you have seen before. #10 would advance the simulation by 10 timesteps.
These commands will advance the simulation until the <signal> rises or falls.

For example:

@(posedge signal);

@(posedge signal);

Simulation time will advance until we have seen two rising edges of signal.

• repeat - it acts like a for loop but without an increment variable

For example:

repeat (2) @(negedge clk);

repeat (10) begin

@(posedge clk);

end

The simulation will advance until we have seen 2 falling clock edges and will then advance
further until we have seen 10 rising clock edges.

• $display - acts as a print statement. Similar to languages like C, if you want to print out a
wire, reg, integer, etc... value in your testbench, you will need to format the string. It works
like printf() in C.

For example:

$display("Wire x in decimal is %d", x);

$display("Wire x in binary is %b", x);

• tasks - tasks are subroutines where you can group and organize some commands rather than
haphazardly putting them everywhere. They can take inputs and assign outputs.

task wait_for_n_clocks();

input [7:0] num_edges;

begin

repeat (num_edges) @(posedge clk);

end

endtask

• fork/join - Allows you to execute testbench code in parallel. You create a fork block with
the keyword fork and end the block with the keyword join.

3

For example:

fork

begin

task1();

end

begin

$display("Another thread");

task2();

end

join

Multiple threads of execution are created by putting multiple begin/end blocks in the fork-
join block. In this example, thread 1 runs task1(), while thread 2 first $displays some text
then runs task2(). The threads operate in parallel.

• Hierarchical Paths - you can access signals inside an instantiated module for debugging pur-
poses. This can be helpful in some cases where you want to look at an internal signal but
don’t want to create another output port just for debug.

For example:

tone_generator tone_gen ();

$display("Signal inside my tone_generator instance, clock_counter: %b",

tone_gen.clock_counter);↪→

4 Synchronizer, Debouncer

4.1 Synchronizer

In Verilog (RTL), digital signals are either 0’s or 1’s. In a digital circuit, a 0 or 1 corresponds to a
low or high voltage. If the circuit is well designed and timed (fully synchronous), we only have to
worry about the low and high voltage states, but in this lab we will be dealing with asynchronous
signals.

The signals coming from the push buttons and slide switches on the PYNQ-Z1 board don’t have
an associated clock signal. For the push-buttons in particular, when those signals are put through
a register, the hold or setup time constraints of that register may be violated. This may put that
register into a metastable state.

4

Figure 1: The ‘ball on a hill’ metaphor for metastability. If a register’s timing constraints are
violated, its output voltage oscillates and after some time unpredictably settles to a stable state.

In a fully synchronous circuit, the timing tools will determine the fastest clock frequency under
which the setup time constraints are all respected and the routing tools will ensure that any hold
time constraints are handled. Introducing an asynchronous signal that isn’t changing with respect
to a clock signal can cause a register to go into a metastable state. This is undesirable since this will
cause a ‘mid-rail’ voltage to propagate to other logic elements and can cause catastrophic timing
violations that the tools never saw coming.

We will implement a synchronizer circuit that will safely bring an asynchronous signal into a syn-
chronous circuit. The synchronizer needs to have a very small probability of allowing metastability
to propagate into our synchronous circuit.

This synchronizer circuit we want you to implement for this lab is relatively simple. For synchro-
nizing one bit, it is a pair of flip-flops connected serially. This circuit synchronizes an asynchronous
signal (not related to any clock) coming into the FPGA. We will be using our synchronizer circuit
to bring any asynchronous off-FPGA signals into the clock domain of our FPGA design.

Figure 2: 1-bit 2 Flip-Flop Synchronizer

Edit the synchronizer.v (in your project sources) file to implement the two flip-flop synchronizer.
This module is parameterized by a width parameter which indicates the number of one-bit signals
to synchronize.

4.1.1 Testing in Simulation

The testbenches to be run are stored in lab4/sim/tests. Each .do file in this directory is run
when you run make in the lab4/sim directory. If you only want to run one testbench, you can
rename all the other .do files in this directory to have a different file extension. Alternatively, you
can leave the file extensions alone, and specify the test you want to run like this:

5

cd lab4/sim

make CASES="tests/sync_testbench.do"

We have provided a testbench for your synchronizer called sync_testbench in sync_testbench.v

(in the project source files). Take a look at the code for this testbench and run it; the testbench
shouldn’t print any failure messages and you should inspect the waveform before you
move on. For details on the constructs/techniques/syntax used in this testbench, refer to Section
3: Testbench Techniques in this lab.

4.2 Debouncer and Edge Detector

Recall this graphic from the prelab debouncer reading. It is an overview of the debouncer circuit
which includes the synchronizer circuit.

For this lab, the debouncer circuit will take a button’s glitchy digital input and output a clean
signal indicating a single button press. The reason we need a circuit for this can be seen in the
figure below.

When we press the button, the signal doesn’t behave like a perfect step function. Instead the button
signal is glitchy due to mechanical “bounce”. A debouncer turns this waveform, which shows a
single button press, into a clean signal with a single voltage transition.

6

Take a look at debouncer.v in your project sources. This is a parameterized debouncer which can
debounce width signals at a time. Your debouncer receives a vector of synchronized 1-bit signals
and it outputs a debounced version of those signals. The other parameters reference the constants
used in the circuit from the prelab reading.

The debouncer consists of:

1. Sample Pulse Generator - Tells our saturating counter when to sample the input signal.
It should output a 1, every sample_count_max clock cycles. By default sample_count_max

is set to 25000.

2. Saturating Counter - This is a counter that counts up to pulse_count_max. The saturating
counter should increment by one if both the sample pulse and the input signal are high at
a clock edge. At any clock edge, if the input signal is 0, the saturating counter should be
reset to 0. Once the saturating counter reaches pulse_count_max, it should hold that value
indefinitely until the input signal falls to 0, upon which the saturating counter should be
reset to 0. The debounced_signal of your debouncer should be an equality check between
the saturating counter and pulse_count_max.

You should use the same sample pulse generator for all input signals into your debouncer, but you
should have a separate saturating counter per input signal. You will likely need to use a 2D reg in
Verilog to create the saturating counters. You will also likely need to use generate-for.

Here is an example of creating a 2D array:

reg [7:0] arr [3:0]; // 4 X 8 bit array

arr[0]; // First byte from arr (8 bits)

arr[1][2]; // Third bit of 2nd byte from arr (1 bit)

And here is an example of using a generate-for loop:

genvar i;

generate

for (i = 0; i < width; i = i + 1) begin:LOOP_NAME

always @ (posedge clk) begin

// Insert synchronous Verilog here

end

end

endgenerate

Implement the debouncer (in debouncer.v).

4.2.1 Edge Detector

The debouncer will act to smooth-out the button press signal. It is then followed up with an edge
detector that can take the low-to-high transition of the debouncer output and use it to generate a
1 clock period wide pulse that the rest of our digital design can use.

Create a variable-width edge detector in edge_detector.v.

7

4.2.2 Testing in Simulation

We’ve provided a testbench to test your debouncer and edge detector circuits in debouncer_testbench.v

and edge_detector_testbench.v. Run the testbench, make sure it passes, and inspect the wave-
forms before FPGA testing. Make sure there are no undefined (red line) signals.

If you are seeing issues where certain registers are red lines (X’s), make sure you give them an
initial state. For a 2D reg initialization, use the following initialization code in debouncer.v:

integer k;

initial begin

for (k = 0; k < width; k = k + 1) begin

saturating_counter[k] = 0;

end

end

The debouncer testbench has 2 tests:

1. Verifies that if a glitchy signal initially bounces and then stays high for less than the saturation
time, that the debouncer output never goes high.

2. Verifies that if a glitchy signal initially bounces and then stays high for more than the
saturation time, that the debouncer goes high and stays high until the glitchy signal goes
low.

The edge detector testbench tests 2 scenarios, when the signal_in is a pulse 10 clock cycles wide
and a pulse 1 clock cycle wide and verifies that the edge_detect_pulse output goes high twice,
both times with a width of 1 clock cycle.

4.2.3 Testing on the FPGA

We have created a top level module called debouncer_fpga_test that will create a 6-bit register and
will use button presses to add and subtract from it. This module will use both your debouncer.v
and edge_detector.v.

Pressing BTN1 or BTN2 will cause the register to incrment by 1. Pressing BTN0 will cause the
register to decrement by 1. BTN3 resets the register to 0. The LEDs will show the current value
of the register.

In your Vivado project, set debouncer_fpga_test as the top module and run the build flow, then
program the board. Make sure that you investigate any warnings for synthesis. You can
ignore some: the top-level module has unused input/output ports to avoid having to change the
XDC file. Make sure you fix any other warnings you find so that the your debouncer will work as
expected on the FPGA.

You will discover when playing with your debouncer that the buttons have a way that they like
being pressed to minimize bounce; get a good feel for them.

8

5 Synchronous Resets In Design and Simulation

Begin by copying your tone_generator and music_streamer from lab 3. Do not change the
port declaration of the lab 4 skeleton files, only copy over your implementation.

Now that we have a debouncer that can give us a pulse for a press of a button, we have a way of
explicitly resetting our circuits! You will recall that in the previous lab, we set the initial value of
registers as below so that our simulation would have defined signals.

reg [23:0] clock_counter = 0;

or

initial clock_counter = 0;

Tying one of the push buttons to a reset signal, we can now do this instead.

always @ (posedge clk) begin

if (rst) begin

clock_counter <= 24'd0;

end

else begin

clock_counter <= clock_counter + 24'd1;

end

end

Unlike what we did before, this Verilog is synthesizable for all deployment targets, FPGAs, ASICs,
and CPLDs alike. Go ahead and modify your tone_generator and music_streamer to use the
provided RESET signal to get your registers to a sensible initial state.

After doing this, run the tone_generator_testbench again using make in the lab4/sim/ directory
(or just use Vivado’s simulator). View the waveform using the simulator and see how we used a
reset in the testbench to bring all the registers to a defined state without specifying a default value.

6 Music Streamer Tempo Control

Let’s use the new user inputs we now have access to. You will recall that your music_streamer by
default chooses to play each tone in the ROM for 1/25th of a second. Extend the functionality of
the music_streamer so that one input increases the tempo, one input decreases it, and one resets
it to a default value. If you have the hex keypad working, you can map any of the keys to these
functions, but make a note of it. If not, use the push-buttons left on the Pynq-Z1 (remembering
that BTN3 is now reserved as a global reset signal).

You can implement this by using a register to hold the number of clock cycles per note. Instead of
this number being hardcoded in Verilog to represent 1

25th of a second, you can change it at runtime.
One input should add or subtract a fixed number from this register, which should alter the time
each tone is played. You get to choose this number; find something reasonable.

9

Try this out on the FPGA and verify that you have control of your music_streamer’s tempo using
the inputs. You should be able to speed up and slow down the music you are playing.

7 Music Streamer FSM

Now, you will implement a simple FSM in the music_streamer.

The FSM will have 3 states: PAUSED, REGULAR_PLAY, REVERSE_PLAY. Here is the state transition
diagram:

REGULAR PLAYstart

REVERSE PLAY

PAUSED
Play-pause button

Reverse button
Play-pause button

1. Your initial state should be REGULAR_PLAY.

2. Pressing one button should transition you into the PAUSED state from either the REGULAR_PLAY
or REVERSE_PLAY states. Pressing the same button while in the PAUSED state should transition
the FSM to the REGULAR_PLAY state.

3. In the PAUSED state, your ROM address should be held steady at its value before the transition
into PAUSED and no sound should come out of the speaker. After leaving the PAUSED state
your ROM address should begin incrementing again from where it left off and the speaker
should play the tones.

4. You can toggle between the REGULAR_PLAY and REVERSE_PLAY states by using a second input
button. In the REVERSE_PLAY state you should decrement your ROM address by 1 rather
than incrementing it by 1 every X clock cycles as defined by your tempo.

5. If you don’t press any buttons, the FSM shouldn’t transition to another state.

10

Your music_streamer takes in user button inputs that it can use to transition states. If you have
a working keypad you will have plenty of inputs to choose from, and you should select new inputs
such that the tempo control from the previous section still works (again, remember to note your
scheme). If not, you have to be creative: use an edge detector circuit with the slide switches to
convert their actuation into a momentary signal (using the switch position as state would be too
easy).

Also, drive the LEDs such that they show the current state. An example:

LED Value

LEDS[5] current_state == REGULAR_PLAY

LEDS[4] current_state == PAUSED

LEDS[3] current_state == REVERSE_PLAY

LEDS[2:0] 0

You can run the testbench in music_streamer_testbench.v to test out your state machine. Take
a look at the code to see what it does and inspect your waveform to check that your FSM is
performing correctly. Verify that you don’t have any unexpected synthesis warnings.

Finally, program the FPGA with your music_streamer, and verify its functionality.

8 Optional Components

8.1 Shift Register (Optional)

A shift register “bubbles” new inputs from one end of a flip-flop chain to the other. It looks like
a FIFO queue: with every input trigger, a new input is loaded into the first register, and all other
values are moved along one. The last value is discarded.

Shift registers are useful for loading larger values than you have inputs available. Consider, for
example, inputting a 32-bit binary number with only two inputs. Or inputting an 8-digit alarm
code with a hey keypad: you should be able to enter press one key at a time and to store the
complete value in the circuit.

The input trigger is usually not the clock: you want the registers only to take new values as some
input event occurs. Your task is now to build a variable-depth and variable-width shift register
module using the techniques you’ve seen so far (in particular in the Debouncer code). You’ll need:

• a WIDTH and a DEPTH parameter;

• a single output signal that is WIDTH×DEPTH-many bits wide;

• a WIDTH-wide input signal; and

• an input trigger signal.

Complete the code in shift_register.v to implement the shift register.

11

8.1.1 Testing in Simulation

As for the other circuits, a testbench for the shift register has been provided for you. Run it and
confirm that there are no reported failures. Inspect the waveform to make sure you understand
why, in any case.

8.2 Hex Keypad (Optional)

As you’ve already noticed, unfortunately, our Pynq-Z1 buttons only have 6 basic IO inputs: the 4
buttons and the 2 slide switches. In order to upgrade our capabilities to control the Music Streamer,
we have procured hex-keypads.

If you would like to install and implement the keypad decoder, you will be able to use it as 16
additional inputs to your later design.

We will be using the Digilent PmodKYPD, as seen here. Peruse the reference manual online or
from the lab resources directory fpga labs fa19/resources/pmodkypd rm.pdf.

8.2.1 PMOD Expansion Headers

Digilent has developed an expansion port for their development boards called PMOD. There are
two PMOD ports on the Pynq-Z1, whose pins are hardwired to GPIO pins on the FPGA itself.
Using PMOD ports is just a matter of plugging in compatible circuits and binding the PMOD-wired
FPGA pins in our constraints file, as we’ve done for other basic I/O on the board. The PMOD
header has two power rails, two ground rails, and 8 logic pins.

12

https://store.digilentinc.com/pmod-kypd-16-button-keypad/

Read about the PMOD headers in the Pynq-Z1 reference manual here (or in the PDF in the lab
resources directory).

8.2.2 Installing our keypad

The PMOD headers are at the top-right of your board, when it’s oriented so you can read the
text. Plug the hex key into PMODA or PMODB. In your project’s PYNQ-Z1_C.xdc constraints
file, uncomment the corresponding pins for your PMOD port of choice and bind them to the
KEYPAD ROWS/KEYPAD COLS signals in z1top.v.

8.2.3 Developing a Decoder

Now to make the keypad useful. As you will have read in the reference material, you have to sample
the keypad in order to figure out which button was pushed. (We already did some sampling in the
Debouncer circuit.) Specifically, you have to cycle through each column pin, driving it low while
keeping the other column pin signals high. We then read each row pin: if the pin is low, you have
detected a keypress at the current (row, column) position, and should emit its value as the output
of our decoder.

You should sample columns at about 1 kHz, or about every 1 ms. After another short delay (about
8 clock cycles) you can check the row pins. Keeping track of which column you’re in and which
row you’re sampling, you can directly output the decoded value.

To help get you up and running faster, you can use Digilent’s sample code to understand one way
of implementing the interface. We have provided it verbatim in lab4/lab4.srcs/sources 1/new/
keypad decoder.v. Read it for ideas, but do not copy it directly. You have enough experience
by now to implement it yourself.

8.3 Building a Music Sequencer FSM (Optional)

Note: This section of the lab relies heavily on additional circuit inputs (e.g. buttons); if you haven’t
got the keypad input working from Section 8.2 it will be quite cumbersome. It’s recommended that
you get the keypad working first, so that you can use it here. Transitions are described in terms
of abstract inputs here. It’s up to you to map them in a consistent way (remember to record your
scheme).

Here is a new state transition diagram for a music sequencer we will build inside the music_streamer
module.

13

https://reference.digilentinc.com/reference/pmod/pmodkypd/start

REGULAR PLAYstart

REVERSE PLAY

PAUSED

PLAY SEQ

EDIT SEQ

play pause

switch mode

play pause

switch mode

switch fn

switch fn

play pause

We have added two new states PLAY_SEQ and EDIT_SEQ. You should wire up an LED to current_state
== EDIT_SEQ and another LED to current_state == PLAY_SEQ. You should implement the skele-
ton of this state machine before proceeding with the complete explanation.

Our goal is to create an 8-tap music sequencer that we can use along with our regular music
streamer. Our music sequencer will have a place (RAM) where it stores the tone_switch_periods
of 8 notes. When we are in the PLAY_SEQ state, the music streamer will play the 8 notes, one after
the other, in a continuous loop. Each note will play for a set amount of time as determined by the
sequencer tempo. While in the PLAY_SEQ state we can change the sequencer tempo using some
input (the sequencer tempo is different from the ROM tempo you modified earlier).

We can edit these 8 notes on the fly by moving into the EDIT_SEQ state. In this state, the LEDs
should show which of the 8 notes we are currently editing. Using the keypad (or a repurposed
input), we can select a new pitch for this note. We will also use another input to save the selected
pitch in the RAM location for this note. Two more inputs can be used to select between different
notes.

You will find some skeleton code in music_streamer.v to help you implement the sequencer. This is
a complicated circuit, so you should add features slowly and modify the music_streamer_testbench
to test out your sequencer. Here is a list of requirements for your sequencer:

1. You should have two tempo controls.

(a) The ROM tempo affects the duration of each note in the ROM and can be modified
in either the REGULAR_PLAY or REVERSE_PLAY states by the some input.

14

(b) The sequencer/RAM tempo affect the duration of each note in the sequencer RAM
and can be modified only in the PLAY_SEQ state.

2. The LEDs should be used for the following functions in different states.

(a) In the REGULAR_PLAY, PAUSED, and REVERSE_PLAY states, the 6 LEDs should display 6
bits of the rom address (most significant, least significant, or somewhere in the middle,
as long as it’s useful - you decide).

(b) In the PLAY_SEQ state, the 6 LEDs should display the note being played. To spare LEDs,
you can use binary encoding, so that when note 5 is plae the LEDs show 101.

(c) In the EDIT_SEQ state, the 6 LEDS should display the note being edited. As before,
binary encoding is fine.

3. In the EDIT_SEQ state, the speaker should play the current pitch of the note. You should
have inputs which increase and decrease the pitch by some amount per click. Another input
should save the current pitch of the note into the sequencer’s RAM.

4. In the EDIT_SEQ state, you should have inputs which change the note being edited. As you
change notes, the speaker should play the pitch of the new note being edited.

5. You can use the same clock_counter for all parts of this state machine including the se-
quencer and the regular music streamer.

6. You can use the same sequencer_address for the two sequencer states.

7. You can choose what the reset values for the sequencer RAM entries are. A sensible default
is provided in the skeleton code.

Hint: If you have the hex keypad working, you can use it as a series of 16 new input buttons, or
with the shift register as a mean to directly input the tone values!

Please ask the TA if you have any questions about specifications for the sequencer or FSM in
general.

9 Checkoff

1. Show the TA your Verilog RTL for all the components you designed for this lab (synchronizer,
debouncer, shift register, FSM) and briefly explain the design of each of them.

2. Show the TA your working design with the FSM. Be able to transition states by clicking
on either the hex keypad or using the slide switches, and show that your music_streamer

matches the spec.

3. Show the tempo control working by using the push buttons to speed up and slow down the
music.

4. Demonstrate that hitting the the reset button resets the ROM address back to 0 and puts
the FSM into the REGULAR_PLAY state.

5. (Optional) Show the TA that that you can decode hex keypad presses correctly.

15

6. (Optional) Demonstrate that you can transition into the SEQUENCER state and that you can
edit your tones and play them back.

Ackowlegement

This lab is the result of the work of many EECS151/251 GSIs over the years including:

• Sp12: James Parker, Daiwei Li, Shaoyi Cheng

• Sp13: Shaoyi Cheng, Vincent Lee

• Fa14: Simon Scott, Ian Juch

• Fa15: James Martin

• Fa16: Vighnesh Iyer

• Fa17: George Alexandrov, Vighnesh Iyer, Nathan Narevsky

• Sp18: Arya Reais-Parsi, Taehwan Kim

• Fa18: Ali Moin, George Alexandrov, Andy Zhou

16

	Before You Start This Lab
	Lab Overview
	Testbench Techniques
	Synchronizer, Debouncer
	Synchronizer
	Testing in Simulation

	Debouncer and Edge Detector
	Edge Detector
	Testing in Simulation
	Testing on the FPGA

	Synchronous Resets In Design and Simulation
	Music Streamer Tempo Control
	Music Streamer FSM
	Optional Components
	Shift Register (Optional)
	Testing in Simulation

	Hex Keypad (Optional)
	PMOD Expansion Headers
	Installing our keypad
	Developing a Decoder

	Building a Music Sequencer FSM (Optional)

	Checkoff

