
EECS 151/251A FPGA Lab

Lab 3: Simulation, Connecting Modules, and Memories

Prof. John Wawrzynek
TAs: Christopher Yarp, Arya Reais-Parsi

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

Contents

1 Before You Start This Lab 2
1.1 Helpful Hint: Synthesis Warnings and Errors . 2

2 Lab Overview 2

3 Simulating the tone generator from Lab 2 3
3.1 Copying Your Lab 2 Code . 3
3.2 Overview of Testbench Skeleton . 3
3.3 A Choice of Simulators . 5
3.4 ModelSim . 6

3.4.1 Using TCL scripts for ModelSim (.do files) 6
3.4.2 Running ModelSim . 7
3.4.3 Viewing Waveforms . 7
3.4.4 Fixing the Undefined clock counter . 8
3.4.5 Helpful Tip: Reloading ModelSim .wlf . 9
3.4.6 Listen to Your Square Wave Output . 9
3.4.7 Playing with the Testbench . 9

3.5 Vivado’s Integrated Simulator . 9
3.5.1 Where does Vivado put output.txt? . 11

3.6 Resetting Simulations . 11

4 Introduction to Inferred Asynchronous ROMs 11

5 Design of the music streamer 12

6 Simulating the music streamer 13

7 Verify your Code Works For Rest Notes 13

8 Try it on the FPGA! 13

1

9 Saving your Work Using Git 14
9.1 Adding New Files . 14
9.2 Checking Git Status . 14
9.3 Committing Your Solution . 14
9.4 Setting Up Your Private GitHub Repository - Do this Once Per Clone 15
9.5 Pushing Updates to your Private GitHub Repository 15
9.6 Pulling from GitHub . 16

10 Checkoff 16

11 Conclusion 16

1 Before You Start This Lab

Before you proceed with the contents of this lab, we suggest that you look through these two
documents that will help you better understand some Verilog constructs.

1. fpga labs sp19/resources/Verilog/wire vs reg.pdf - The differences between wire and
reg nets and when to use each of them.

2. fpga labs sp19/resources/Verilog/always at blocks.pdf - Understanding the differences
between the two types of always @ blocks and what they synthesize to.

The first couple sections of this lab focus on simulation and it would be valuable to read these
documents before starting.

1.1 Helpful Hint: Synthesis Warnings and Errors

At various times in this lab, things will just not work on the FPGA or in simulation. To help with
debugging, you can run the Synthesis step in your project from within Vivado. Have a look at the
Synthesis messages that are generated as result. You can view them from the Project Summary
window or from within the Synthesized Design window. Also remember that you can view all
toolchain messages by selecting Window → Messages. Any synthesis warnings you see here could
reveal a possible issue in your circuit. If you don’t understand a warning, ask a TA.

2 Lab Overview

In this lab, we will begin by taking your configurable frequency tone_generator design from
Lab 2 and simulating it in software. We will learn how to use ModelSim and/or Vivado to view
waveforms and debug your circuits. You will then construct a module that can pull tones to play
from a memory block and send them to your tone_generator.

2

3 Simulating the tone generator from Lab 2

3.1 Copying Your Lab 2 Code

Run git pull in your git cloned fpga labs sp19directory to fetch the latest skeleton files.

Begin by copying your tone_generator implementation into the lab3/lab3.srcs/sources_1/new/
tone_generator.v file.

Let’s run some simulations on the tone_generator in software. To do this, we will need to use a
Verilog testbench. A Verilog testbench is designed to test a Verilog module by supplying it with
the inputs it needs (stimulus signals) and testing whether the outputs of the module match what
we expect.

3.2 Overview of Testbench Skeleton

Check the provided testbench skeleton in lab3/lab3.srcs/sources_1/new/tone_generator_testbench.v

to see the test written for the tone_generator. Let’s go through what every line of this testbench
does.

`timescale 1ns/1ns

The timescale declaration needs to be at the top of every testbench file. It provides information to
the circuit simulator about the timing parameters of the simulation.

`timescale (simulation step time)/(simulation resolution)

The first argument to the timescale declaration is the simulation step time. It defines the chunks of
discrete time in which the simulation should proceed. In this case, we have defined the simulation
step time to be one nanosecond. This means that we can advance the simulation time by as little
as 1ns at a time.

The second argument to the timescale declaration is the simulation resolution. In our example it is
also 1ns. The resolution allows the simulator to model transient behavior of your circuit in between
simulation time steps. For this lab, we aren’t modeling any gate delays, so the resolution can equal
the step time.

`define SECOND 1000000000

`define MS 1000000

// The SAMPLE_PERIOD corresponds to a 44.1 kHz sampling rate

`define SAMPLE_PERIOD 22675.7

These are some macros defined for our testbench. They are constant values you can use when
writing your testbench to simplify your code and make it obvious what certain numbers mean. For
example, SECOND is defined as the number of nanoseconds in one second. The SAMPLE_PERIOD is
the sampling period used to sample the square wave output of the tone_generator at a standard
44.1 kHz sample rate.

3

module tone_generator_testbench();

// Testbench code goes here

endmodule

This module is a testbench module. It is not actually synthesized to be placed on an FPGA, but
rather it is to be run by a circuit simulator. All your testbench code goes in this module. We will
instantiate our DUT (device under test) in this module.

reg clock;

reg output_enable;

reg [23:0] tone_to_play;

wire sq_wave;

Here are the inputs and outputs of our tone_generator. You will notice that the inputs to the
tone_generator are declared as reg type nets and the outputs are declared as wire type nets.
This is because we will be driving the inputs in our testbench and we will be monitoring the output.

initial clock = 0;

always #(4) clock <= ~clock;

This is clock signal generation code. The clock signal needs to be generated in our testbench so it
can be fed to the DUT. The initial statement sets the value of the clock net to 0 at the very start of
the simulation. The next line toggles the clock signal every 4ns, i.e. half period of 125 MHz clock.

tone_generator audio_controller (

.clk(clock),

.output_enable(output_enable),

.tone_switch_period(tone_to_play),

.square_wave_out(sq_wave)

);

Now we instantiate the DUT and connect its ports to the nets we have access to in our testbench.

initial begin

output_enable <= 0;

#(10 * `MS);

output_enable <= 1;

tone_to_play <= 24'd37500;

#(200 * `MS);

...

$finish();

end

Here is the body of our testbench. The initial begin ... end block specifies the ‘main()’
function for our testbench. It is the execution entry point for our simulator. In the initial block,
we can set the inputs that flow into our DUT using non-blocking (<=) or blocking (=) assignments.

We can also order the simulator to advance simulation time using delay statements. A delay

4

statement takes the form #(delay in time steps);. For instance the statement #(100); would
run the simulation for 100ns.

In this case, we set output_enable to 0 at the start of the simulation, then we let the simulation
run for 10ms, then we set output_enable to 1. We then change the tone_to_play several times,
and give the tone_generator some time to produce the various tones.

The final statement is a system function: the $finish() function tells the simulator to halt the
simulation.

integer file;

initial begin

file = $fopen("output.txt", "w");

forever begin

$fwrite(file, "%h\n", sq_wave);

#(`SAMPLE_PERIOD);

end

end

This piece of code is written in a separate initial begin ... end block. The simulator treats
both blocks as separate threads that both start execution at the beginning of the simulation and
operate in parallel.

This block of code uses two system functions $fopen() and $fwrite(), that allow us to write
to a file. The forever begin construct tells the simulator to run the chunk of code inside it
continuously until the simulation ends.

In the forever begin block, we sample the square_wave_out output of the tone_generator and
save it in a file. We sample this value every `SAMPLE_PERIOD nanoseconds which corresponds to a
44.1 kHz sampling rate. Your tone_generator’s output is stored as 1s and 0s in a text file that
can be converted to an audio file to hear how your circuit will sound when deployed on the FPGA.

3.3 A Choice of Simulators

As you’ve realised, the steps in the design and synthesis toolchain are independent programs with
agreed interfaces for data flow. When it comes to simulating an HDL description of some design,
several commercially available simulation tools exist. In this lab we will consider two:

1. Vivado Design Suite has an integrated simulator, xsim, that can run your Verilog testbench
directly. You will have seen in previous labs the Simulation category in Flow Navigator to
the left of the Design Suite application window.

2. ModelSim is a third-party application by Mentor Graphics. It can also synthesise a sim-
ulation of a given Verilog testbench (and its dependent modules), but is a more powerful
standalone product.

Both simulators have a lot in common. They both allow you to view the waveforms of various
signals in your design as a simulation, which you control, progresses. They’re both driven by Tcl

5

https://www.mentor.com/products/fv/modelsim/

scripts (below), though you can also use a GUI to tweak their behaviour. Their GUIs have similar
elements.

To avoid using the Vivado ISE simulator past years’ labs have relied on the external ModelSim
application, which is also used by the ASIC labs. For our purposes, the newer Vivado Design Suite
simulator is actually pretty good. It’s also built-in to the free WebPACK version of Vivado, whereas
ModelSim requires a second license - a pain if you want to run simulations locally, at home. We
will still emphasise ModelSim, however to help give you experience in a sandbox environment. It’ll
be useful to get a feel for the Vivado integrated simulator too, as a back up should you ever need
it. Understanding the features common to both or unique to one should make you more confident
approaching unknown tools out in the wild.

We provide a sim directory in the lab3 folder to run the ModelSim simulation from. (Vivado can
also be configured to launch ModelSim directly - you can try and set that up if you want.) The
next sections will introduce you to ModelSim before comparing it to the Vivado integrated option.

3.4 ModelSim

3.4.1 Using TCL scripts for ModelSim (.do files)

ModelSim takes commands from TCL scripts. Take a look at the lab3/sim/tests/tone_generator
_testbench.do TCL script. Here is a quick description of what is instructs our simulator to do.

start tone_generator_testbench

add wave tone_generator_testbench/*

add wave tone_generator_testbench/audio_controller/*

run 10000ms

We begin by issuing the start command to the simulator. This instructs the simulator to scan
a list of Verilog source files provided to it to find a module named tone_generator_testbench.
This module name must exactly match the module name of your top-level testbench module. The
simulator loads and elaborates this module so that its ready to simulate/execute.

The two add_wave commands are important. By default, the simulator will not log the signals in
our testbench or DUT as the simulation executes. The add wave tone_generator_testbench/*

line tells the simulator to log all signals directly inside in the tone_generator_testbench module.
The second line tells the simulator to log the signals in a submodule of the top-level testbench
module. Observe that audio_controller is the instance name of the tone_generator instance in
the testbench module.

Finally, the run (time) command tells the simulator to jump to the initial begin blocks in the
testbench and actually run the simulation. The time value (in our case 10000ms = 10s) gives the
simulator an upper bound on the simulation time. The simulator will simulate for 10 seconds before
timing out. If the simulator hits the $finish() function before the 10 second timeout is up, it will
stop simulation instantly.

6

3.4.2 Running ModelSim

With all the details out of the way, let’s actually run a simulation. Go to the lab3/sim directory
and run make CASES=tests/tone_generator_testbench.do. After a minute or so, the simulation
will finish.

3.4.3 Viewing Waveforms

Let’s take a look at the data that the simulator collected. Run the viewwave script like this:

./viewwave results/tone_generator_testbench.wlf &

The results of the simulation and the logged signals are stored in a .wlf file. This command should
open that file in the ModelSim Wave Viewer.

You should see a window like this:

Let’s go over the basics of ModelSim. The boxed screens are:

1. Module Window - List of the modules involved in the testbench. You can select one of
these to have its signals show up in the object window.

2. Object Window - List of all the wires and regs in the selected module. You can add signals
to the waveform view by selecting them, right-clicking, and doing Add Wave.

3. Waveform Viewer - The signals that you add from the object window show up here. You
can navigate the waves by searching for specific values or going forward or backward one
transition at a time. The x-axis represents time.

7

You may not see the Waveform Viewer when you first open ModelSim. To add signals to view,
right click on the signal in the Object Window, and click on Add Wave. Add the clock, output_enable,

and sq_wave signals to the waveform viewer.

Here are a few useful shortcuts:

• Click on waveform: Sets cursor position

• O: Zoom out of waveform

• I: Zoom into waveform

• F: Fit entire waveform into viewer (zoom full)

• C: Zoom in on cursor position

• Middle Click + Drag Left/Right: Zoom in on waveform section

• Middle Click + Drag to Top Right: Zoom out from current waveform section

You should play with these shortcuts for a few minutes. Now, zoom to fit the entire waveform in
your viewer.

You should be able to see the clock oscillate at the frequency specified in the testbench. You should
also see the output_enable signal start at 0 and then become 1 after 10 ms. However, you may
see that the sq_wave signal is just a red line. What’s going on?

3.4.4 Fixing the Undefined clock counter

Blue lines in ModelSim indicate high-impedance (unconnected) signals. High-impedance is specified
in Verilog as the letter z. We won’t be using high-impedance signals in our designs, so blue lines
in ModelSim indicate something in our testbench isn’t wired up properly.

If you have a red line for your clock_counter at the start of your simulation, it may be because
the initial value sitting inside the clock_counter register is unknown. It could be anything! Since
we don’t have an explicit reset signal for our circuit to bring the clock_counter to a defined value,
it may be unknown for the entire simulation.

Let’s fix this. In the future we will use a reset signal, but for now let’s use a simpler technique. In
lab2/src/tone_generator.v modify this line as such:

// Original code:

reg [x:0] clock_counter;

// Change to:

reg [x:0] clock_counter = 0;

This tells the simulator that the initial value for this register should be 0. For this lab, when you
add new registers in your tone_generator or any other design module, you should instantiate them
to their initial value in the same way. Do not set an initial value for a ’wire’ type net; it
will cause issues with synthesis, and may cause X’s in simulation.

8

Now run the simulation again.

3.4.5 Helpful Tip: Reloading ModelSim .wlf

When you re-run your simulation and you want to plot the newly generated signals in ModelSim,
you don’t need to close and reopen ModelSim. Instead click on the ’Reload’ button on the top
toolbar which is to the right of the ’Save’ button.

3.4.6 Listen to Your Square Wave Output

Take a look at the file written by the testbench located at lab3/sim/build/output.txt. It should
be a sequence of 1s and 0s that represent the output of your tone_generator sampled at 44.1 kHz.
Use a Python script that can take this file and generate a .wav file that you can listen to.

Go to the lab3/ directory and run the command:

python scripts/audio_from_sim.py sim/build/output.txt

This will generate a file called output.wav. Run this command to play it:

play output.wav

If play doesn’t work, try running aplay output.wav.

You should hear 5 tones, played rapidly one after the other that have descending frequencies.

3.4.7 Playing with the Testbench

Play around with the testbench by altering the clock frequency, changing when you turn on
output_enable and verifying that you get the audio you expect. For checkoff be able to answer
the following questions and demonstrate understanding of simulation:

1. If you increase the clock frequency from 125 Mhz, would you expect the tones generated by
your tone_generator to be of a higher or lower frequency than was generated with the 125
MHz clock? Why? Show audio evidence of this using simulation.

2. Prove that the output_enable input of your tone_generator actually works in simulation.

3. Create a testbench that plays some simple melody that you define and have its audio output
file ready for checkoff.

3.5 Vivado’s Integrated Simulator

Inside a Vivado project, expand the Simulation Sources category in your Project Hierarchy window
(that’s the one with all your files). At any given time only one Verilog module can be the simulation
“Top”, just as there can only be one synthesis “Top” for implementation. If it isn’t already, right-
click tone_generator_testbench and select Set As Top. Then in the Flow Navigator window, click

9

Run Simulation in the Simulation category. You will get a context menu: select Run Behavioural
Simulation.

Then you will be presented with the Vivado Simulation window:

This should be familiar to you: it looks and behaves like the ModelSim GUI you saw earlier.

1. is the Scope Window, which is like ModelSim’s Module Window, and lets you select from
among simulated modules;

2. is an Object Window just like ModelSim’s, allowing you to select waveforms to view; and

3. is the Waveform Viewer.

Play around with it; does your intuition from ModelSim carry over?

Although the Vivado simulator can be controlled with a Tcl script like ModelSim, there is a GUI
way to modify settings too. Click Tools menu → Settings to bring up the Project Settings dialog.
Select the Simulation category in the left pane. (Notice that you can change the default simulator
here from Vivado to, say, ModelSim.) The options defined in various tabs in the right hand pane
allow you to select various simulation parameters, including initial duration.

A final note: when the Simulation window is open in Vivado, you can use the Tcl Console to
execute simulation commands. (The Tcl Console appears just below boxes (1) - (3) in the figure
above.) A lot of the commands you can use here will work like they do for ModelSim. The full list
of commands is available in the user manual from Xilinx.

10

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug937-vivado-design-suite-simulation-tutorial.pdf

3.5.1 Where does Vivado put output.txt?

The Vivado simulator will also have produced an output.txt file with waveform samples. But
where? In your project root directory, use find to find out:

lab3 $ find . -name "output.txt"

./lab3/lab3.sim/sim_1/behav/xsim/output.txt

3.6 Resetting Simulations

Running simulations, both for ModelSim and in Vivado, generates a lot of signal data for the
waveforms viewers. You often don’t need to keep this intermediary data (which is easily several
gigabytes in this lab alone), and you may be running out of quota on the machine you’re using. In
order to clear intermediate state and reset the simulation, perform the following steps.

1. For ModelSim, navigate to the sim directory in which you executed make CASES=, e.g.
fpga labs sp19/lab3/sim. There, execute make clean.

2. For Vivado, open the Tcl Console. It’s usually available toward the bottom-left of the
application window, but can also be opened from the menus. In the Tcl Console, execute
reset_simulation.

4 Introduction to Inferred Asynchronous ROMs

An asynchronous memory is a memory block that isn’t governed by a clock. In this lab, we will
use a Python script to generate a ROM block in Verilog.

A ROM is a read-only memory. This data can be accessed by supplying an address to the ROM;
after some time, the ROM will output the data stored at that address. A memory block in general
can contain as many addresses in which to store data as you desire. Every address should contain
the same amount of data (bits). The number of addresses is called the depth of the memory, while
the number of bits stored per address is called the width of the memory.

The synthesizer takes the Verilog you write and converts it into a low-level netlist of the structures
are actually used on the FPGA. Our Verilog describes the functionality of some digital circuit
and the synthesizer infers what primitives implement the functional description. In this section,
we will examine the Verilog that allows the synthesizer to infer a ROM. This is a minimal example
of a ROM in Verilog: (depth of 8 entries/addresses, width of 12 bits)

module rom (input [2:0] address, output reg [11:0] data);

always @(*) begin

case(address)

3'd0: data = 12'h000;

3'd1: data = 12'hFFF;

3'd2: data = 12'hACD;

3'd3: data = 12'h122;

11

3'd4: data = 12'h347;

3'd5: data = 12'h93A;

3'd6: data = 12'h0AF;

3'd7: data = 12'hC2B;

endcase

end

endmodule

To power our tone_generator, we will be using a ROM that is X entries/addresses deep and 24
bits wide. The ROM will contain tones that the tone_generator will play. You can choose the
depth of your ROM based on the length of the sequence of tones you want to play.

We’ve provided you with a few scripts that can generate a ROM from either a file with it’s contents
or even from sheet music. Run these commands from lab3/.

python scripts/musicxml_parser.py musicxml/Twinkle_Twinkle_Little_Star.mxl music.txt

python scripts/rom_generator.py music.txt ./lab3.srcs/sources_1/new/rom.v 1024 24

The first script will parse a MusicXML file and turn it into a list of tone_switch_periods for each
of the notes for a piece of sheet music. The second script will take that list and turn it into a ROM
that’s 1024 entries deep with a width of 24 bits.

Take a look at music.txt and src/rom.v. You can download your own music in MusicXML format
from here (https://musescore.org/) and run it through the same parser; it should ideally only
have one part to work properly. You can also directly edit the music.txt file to customize the
contents of the ROM as you wish.

5 Design of the music streamer

Open up the music_streamer.v file. You will need to modify this module to contain an instance
of the ROM you created earlier and logic to address the ROM sequentially to play notes. The
music_streamer will play each note in the ROM for a predefined amount of time by sending it to
the tone_generator.

We will play each note for 1/25th of a second. Calculate what that is in terms of 125Mhz clock
cycles.

Now let’s begin the design of the music_streamer itself. Instantiate your ROM in the music_streamer
and connect the ROM’s address and data ports to wire or reg nets that you create in your module.
The last_address port outputs the last address in the ROM (depth).

Next, write the RTL that will increment the address supplied to the ROM every 1/25th of a
second. The data coming out of the ROM should be fed to the tone output. The ROM’s address
input should go from 0 to the depth of the ROM and should then loop around back to 0. You
don’t have a reset signal, so define the initial state of any registers in your design for simulation
purposes. Also hook up the rom_address output to the ROM address currently being accessed.

Now that you have implemented music_streamer, create an instance of it in the module z1top.v.
Use the instance name streamer to match the expected name in the .do file. Instantiate a

12

https://musescore.org/

tone_generator and wire SWITCHES[1] to output_enable, CLK_125MHZ_FPGA to clk, and aud_pwm

to square_wave_out. Assign aud_sd to 1. Connect the tone output of the music_streamer to the
tone_switch_period input of the tone_generator. Connect the music_streamer’s clk input to
the global clock signal. Finally, connect its rom_address output to the LEDSs by routing the top 6
bits of address.

6 Simulating the music streamer

To simulate your music_streamer open up the lab3/src/music_streamer_testbench.v. In con-
trast to the tone_generator_testbench where the tone_generator was instantiated in isolation,
in this testbench we are instantiating our entire top-level design, z1top. This testbench is referred
to as a system-level testbench, which tests our entire design using top-level I/O, in contrast to
the tone_generator_testbench which is a block-level testbench. This is similar to the difference
between unit and integration tests in software development.

You can see that this testbench just runs a simulation for 2 seconds and then exits. You might have
to modify the music_streamer_testbench.do file to match the name of your module instances in
z1top.v.

To execute the testbench, run make CASES=tests/music_streamer_testbench.do in lab3/sim.
This may take several minutes to complete. You may have to run make clean before running make

if ModelSim has cached build artifacts.

Inspect your waveform to make sure you get what you expect. Verify that there are no undefined
signals (red lines, x) Then run the Python script to generate a .wav file of your simulation results
and listen to your music_streamer. It should sound like the first few seconds of the song that was
loaded on the ROM.

7 Verify your Code Works For Rest Notes

In simulation, you can often catch bugs that would be difficult or impossible to catch by running
your circuit on the FPGA. You should verify that if your ROM contains an entry that is zero (i.e.
generate a 0Hz wave), that the tone_generator holds the square_wave_out output at either 1 or
0 with no oscillation. Verify this in simulation, and prove the correct functionality during checkoff.

8 Try it on the FPGA!

Now try your music_streamer on the FPGA. You should expect the output to be the same as in
simulation. The SWITCHES[1] switch should still work to disable the output of the tone_generator.
Show your final results, simulation, and the working design on the FPGA to the TA for checkoff.

13

9 Saving your Work Using Git

At the beginning of this lab, you were asked to copy part of your solution lab 2 into this project.
As we continue onto new labs and eventually onto the project, you will be asked to build off of
your solution to previous labs. Given that your lab solutions will be important later in the term,
we want to make sure you have a safe place to store your solutions. To do that, we have provided
you with a private git repository on GitHub.

As was mentioned in lab 1, git is a revision control system that can keep track of files in your lab as-
signments and project. You have already been using git to get each week’s lab assignments. Starting
with this lab, you will also be using git to keep track of your solutions to the lab assignments.

Now let’s get your solution committed into the git repository!

9.1 Adding New Files

First, git does not automatically track new files that you create. These files can be added to git
using the git add command. If you created any new files during this lab that you want to save,
run the following command (replacing <path to file> with the path to the file you wish to add):

git add <path to file>

9.2 Checking Git Status

We can check to see what git believes the state of the repository is. Run the following command
in the lab3 directory:

git status

You should see a list of many files that you have modified over the course of labs 1, 2, and 3. This
command also shows files that git is not tracking, which are listed under the “Untracked files”
section. Check to make sure that files you want to save are not listed in the “Untracked files”
section. If they are, add them using git add.

9.3 Committing Your Solution

We now need to commit your changes to the repository. Committing a file saves any changes made
to the file since the last commit into the repository. There are several methods to do this:

• You can use the command git commit <file/directory list> to commit files that are in
the list specified by <file/directory list>. You should replace <file/directory list>

with the list of files and/or directories you want to commit. Use spaces between the different
files/directories in the list.

• You can use the command git commit -a to commit every file that has been changed and
added with git add.

14

• You can use the git add command to “stage” files for commit. Run git add for each file
you would like to commit. Then run git commit to commit the staged files.

Each of these command will bring up a text editor (probably vim) with a summary of the the
actions git is about to take. It will ask you to type a commit message at the top of the document,
save it, and quit the text editor. If you are comfortable with vim, feel free to enter your commit
message, save the file, and exit. Otherwise, enter :q! and press return. This will exit vim without
saving. Git will give you a message saying that the commit was aborted because of an empty
commit message. You can enter a commit message from the command line by adding the flag
-m "commit message" to any of the above commands. You should replace “commit message” with
some text explaining what you are committing.

9.4 Setting Up Your Private GitHub Repository - Do this Once Per Clone

In this class you will interacting with 2 GitHub repositories :

• a public repository maintained by the lab staff which contains the skeleton code for each lab

• a private repository where you will store your solutions to the lab

Earlier in lab 1, you cloned the public repository maintained by the lab staff. This repository allows
you to pull new updates that the lab staff post. Your private repository can be viewed via a web
browser at https://github.com/EECS150/sp19-eecs151-#### where ### is the three characters
in your eecs151 instructional account. Make sure you can access the web page for your repository.
Because it is private, you will need to be signed into GitHub to see it. You may also need to accept
an invitation sent to the e-mail address you registered with GitHub.

Currently, git on your computer is only aware of the public repository. We need to execute some
commands to tell it about your new private repository.

In the fpga_labs_sp19 directory, run the following commands, replacing ### with the 3 characters
in your eecs151 instructional account:

git remote rename origin staff

git remote add origin git@github.com:EECS150/sp19-eecs151-###.git

You will need to repeat these steps each time you clone the fpga_labs_sp19 repository.

9.5 Pushing Updates to your Private GitHub Repository

Now that you have your files committed into the git repo, you need to push your updates to the
GitHub server. To do this, run the following command:

git push origin master

If you gave a password with your ssh key, enter it when prompted. You should then see messages
indicating that git is pushing your updates to your private repository!

Go to https://github.com/EECS150/sp19-eecs151-### and check that your files made it.

15

9.6 Pulling from GitHub

From this point forward, you will use this command to get new lab content from the course staff:

git pull staff master

If you are on a different computer (ex. a home computer) and want to pull any of the solutions
you committed and pushed to your private repo, use the following command:

git pull origin master

10 Checkoff

1. Section 3 - Answer the questions in section 3.4.7 and show any relevant simulations. Play an
audio file that was generated using the tone_generator_testbench that plays some melody
you define.

2. Section 7 - Prove that if the ROM contains an entry for a tone_switch_period of 0, that
the square wave doesn’t oscillate.

3. Section 8 - Show the working music_streamer on the FPGA.

4. Section 9 - Show that your solution has been committed and pushed to your private github
repository.

11 Conclusion

You are done with lab 3! Please write down any and all feedback and criticism of this lab and share
it with the TA.

Ackowlegement

This lab is the result of the work of many EECS151/251 GSIs over the years including:

• Sp12: James Parker, Daiwei Li, Shaoyi Cheng

• Sp13: Shaoyi Cheng, Vincent Lee

• Fa14: Simon Scott, Ian Juch

• Fa15: James Martin

• Fa16: Vighnesh Iyer

• Fa17: George Alexandrov, Vighnesh Iyer, Nathan Narevsky

• Sp18: Arya Reais-Parsi, Taehwan Kim

16

• Fa18: Ali Moin, George Alexandrov, Andy Zhou

17

	Before You Start This Lab
	Helpful Hint: Synthesis Warnings and Errors

	Lab Overview
	Simulating the tone_generator from Lab 2
	Copying Your Lab 2 Code
	Overview of Testbench Skeleton
	A Choice of Simulators
	ModelSim
	Using TCL scripts for ModelSim (.do files)
	Running ModelSim
	Viewing Waveforms
	Fixing the Undefined clock_counter
	Helpful Tip: Reloading ModelSim .wlf
	Listen to Your Square Wave Output
	Playing with the Testbench

	Vivado's Integrated Simulator
	Where does Vivado put output.txt?

	Resetting Simulations

	Introduction to Inferred Asynchronous ROMs
	Design of the music_streamer
	Simulating the music_streamer
	Verify your Code Works For Rest Notes
	Try it on the FPGA!
	Saving your Work Using Git
	Adding New Files
	Checking Git Status
	Committing Your Solution
	Setting Up Your Private GitHub Repository - Do this Once Per Clone
	Pushing Updates to your Private GitHub Repository
	Pulling from GitHub

	Checkoff
	Conclusion

