
EECS 151/251A FPGA Lab

Lab 2: Introduction to FPGA Development + Creating a Tone

Generator

Prof. John Wawrzynek
TAs: Christopher Yarp, Arya Reais-Parsi

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

1 Before You Start This Lab

Make sure that you have gone through and completed the steps involved in Lab 1. Let the TA know
if you are not signed up for this class on Piazza or if you do not have a class account (eecs151-xxx),
so we can get that sorted out.

To fetch the skeleton files for this lab cd to the git repository (fpga_labs_sp19) that you had
cloned in the first lab and execute the command git pull.

You can find the documents/datasheets useful for this lab in the fpga_labs_sp19/resources

folder. Go through the Verilog Primer Slides in resources/Verilog; you should feel somewhat
comfortable with the basics of Verilog to complete this lab.

2 A Structural and Behavioral Adder Design and also Inspecting
the Schematic

2.1 Build a Structural 14-bit Adder

To help you with this task, please refer to the ‘Code Generation with for-generate loops’ slide in
the Verilog Primer Slides (slide 35).

Open the Lab 2 project (lab2.xpr) in Vivado Design Suite from the lab repo (did you remember to
git pull?). Begin by opening lab2/lab2.srcs/sources_1/new/full_adder.v; fill in the logic
to produce the full adder outputs from the inputs. Then open structural_adder.v and construct
a ripple carry adder using the full adder cells you designed earlier and a ‘for-generate loop’.

Finally, inspect the z1top.v top-level module and see how your structural adder is instantiated
and hooked up to the top-level signals. For now, just look at the user_adder instance of your

1



structural adder. As we learned in previous lab, the basic I/O options on the Z1 board are limited.
How are we managing to input two 3-bit integers?

Run Synthesis, Implementation, and Generate the Bitstream for your design. (Remember that,
in the GUI, you can select a later step in the pipeline and have all prerequisite steps performed
automatically when prompted.) Program the board. Test out your design and see that you get the
correct results from your adder. You should try entering different binary numbers into your adder
with the switches and buttons and see that the correct sum is displayed on the GPIO LEDs.

If there are any problems with your design, you can view the output report in Vivado from the
Project Summary view. The Project Summary tab opens by default, but you can bring it up again
from the Window menu. See box 1 in the figure for an example. At the bottom of the screen (box
2 in the same figure) you can also inspect the outputs of the individual tools that make up the
pipeline; there lies bountiful debugging information should you ever need it. Unfortunately, not
every log or warning message is useful, but it will serve you well to compare what outputs you do
see with the relative success you have with your design.

2



2.2 Inspection of Structural Adder Using Schematic and fpga editor

2.2.1 Schematics and FPGA layout

Now let’s take a look at how the Verilog you wrote mapped to the primitive components on the
FPGA. Three levels of schematic are generated for you once you’ve run the pipeline (each after its
prerequisite step). In the Flow Navigator, you can view Schematics under

1. RTL Analysis → Open Elaborated Design

2. Synthesis → Open Synthesized Design

3. Implementation → Open Implemented Design

The first two will give you a fairly straightforward hierarchical block-level view of your design. You
will find your circuit by drilling down into the user_adder module (that’s the name you gave the
instantiation of structural_adder in z1top.v). Check to see that your structural adder module
is hooked up properly and looks sane. It’s ok if the wires don’t appear to be connected, just hover
your mouse over the endpoints on the schematic and ensure that the connections are as you expect.
Take note of the primitive blocks used in your circuit.

In the RTL Analysis (1) you are viewing a visualisation of the topology your RTL describes. At
this point, logic elaboration is very abstract: you’ll notice that your logic is expressed in terms of
the logic gates you described (XOR, AND, etc). Any logic you describe in RTL is included, even if
it’s disconnected. In the Synthesis schematic (2) this logic has been elaborated further into what
look like FPGA elements, but still at higher layer of abstraction, and with some unused signals still
present. In the final schematic of the three, Implementation (3), the schematic now shows which of
the elements in your nominated chip are actually targeted. Superfluous logic has been elided from
the design.

Play around with the schematics. See how your logic is represented at successive stages of design.

Finally, you also look at how your circuit was placed and laid out on the FPGA. Once you’ve run
the pipeline, open Implemented Design, click on the Window menu, and select Device. You’ll be
presented with a layout of the FPGA package as in box 1 in the figure below. It’ll be hard to
see with a small design, but the logic elements you’ve ended up using with your design will be
highlighted. You can highlight your own nets in the diagram to make it easier to find them by
selecting a net or signal from the Netlist pane (Window → Netlist ; see box 2).

3



Now you can explore your design and look for the modules that you wrote. If you scroll down in
the Netlist Window you should see various components of your logic. Some elements are mapped
to LUTs: somewhere buried in their properties is the type of slice (recall that SLICELs contain
the look-up tables that actually implement the logic you want). See if you can find out which nets
have been assigned to LUTs, and how they are connected. Go ahead and explore several SLICELs
that implement the structural adder to see how they are connected to each other and the outputs
of your circuit.

2.3 Build a Behavioral 14-bit Adder

Check out behavioral_adder.v. It has already been filled with the appropriate logic for you.
Notice how behavioral Verilog allows you to describe the function of a circuit rather than the
topology or implementation.

In z1top.v, you can see that the structural_adder and the behavioral_adder are both instan-
tiated in the self-test section. A module called adder_tester has been written for you that will
check that the sums generated by both your adders are equal for all possible input combinations.
If both your adders are operating identically, both RGB LEDs will light up. Verify this on your
board.

4



2.4 Inspection of Behavioral Adder Schematics and FPGA Layout

Go through the same steps as you did for inspecting the structural adder. View the schematics at
successive levels of logic elaboration and how FPGA components are connected. Record and note
down any differences you see between both types of adders in the schematic and the FPGA layouts.
You will be asked for some observations during checkoff.

3 Designing a Tone Generator

Now it’s time to try something new. Let’s create a tone generator/buzzer on the FPGA.

Please take a look at pynq-rm.pdf in the fpga_labs_sp19/resources folder. Read about the
clock sources available on the board on page 14. Clock signals are generated outside the FPGA by
a crystal oscillator or a programmable clock generator IC. These clock signals are then connected
to pin(s) on the FPGA so that they can be used in your Verilog design.

Take a look at the z1top.v module and notice the CLK_125MHZ_FPGA input. Next take a look at
the XDC PYNQ-Z1_C.xdc and notice how the LOC for the clock net is set to H16, just as specified
in the Pynq-Z1 Reference Manual. Are any other clocks available? The 125 MHz clock signal we
will use is actually generated by the Ethernet chip as a cost-saving manoeuvre: it actually gets
disabled when the Ethernet chip is reset. We can access the signal from within our Verilog top-level
module and can propagate this clock signal to any submodules that may need it.

3.1 Audio Out

As described in the Pynq Reference Manual, our evaluation boards have several other neat periph-
erals (and even a few expansion ports). One feature is mono (single-channel) audio out: take a look
at page 18. A Sallen-Key Butterworth low-pass filter is used at the output of another standard
logic interface to the FPGA. This filter “smooths out” a pulse-width-modulated (PWM) signal to
generated sinusoidal signals for driving a (low-power) external speaker. To learn more about how
PWM will help generate an output waveform, read on to page 19. Aside: why is it a low-pass
filter? What is the frequency response of the filter and why is it chosen as such?

3.2 Enabling the Audio Out signal in the constraints file

The description of Audio Out in the Reference Manual tells us which are the relevant pins on the
FPGA. Let’s add the Audio Out connection to the XDC constraints file. Uncomment lines 63 and
64 of PYNQ-Z1_C.xdc, which is the master XDC file we will be using throughout the semester.
These lines specify that the two relevant signals (aud_pwm and aud_sd) are connected to pins R18
and T17, respectively. Additionally, add the two signals to the top-level module z1top.v so that
they can be used in the design. (Should these be inputs or outputs?)

Ask a TA if you need help for this part.

5



3.3 Generating a Square Wave

Let’s say we want to play a 220 Hz square wave out of the Mono Audio Out port on our board.
We want our square wave to have a 50% duty cycle, so for half of the period of one wave the signal
should be high and for the other half, the signal should be low. We have a 125 MHz clock input
we can use to time our circuit.

Find the following:

1. The period of our clock signal (frequency = 125 MHz)?

2. The period of a 220 Hz square wave?

3. How many clock cycles does it take for one period of the square wave?

Knowing how many clock cycles equals one cycle of the square wave, you can design this circuit.
First open tone_generator.v. Some starter code is included in this file. Begin by sizing your
clock_counter register to the number of bits it would take to store the clock cycles per square
wave period. Design the logic such that a 220 Hz square wave comes out of the square_wave_out

output. Instantiate the tone_generator inside z1top.v and connect it to the Audio Out pin we
defined previously. Make sure that you enable the Audio Out with the aid_sd signal as well.

Build your design. Check for any warnings or errors and try to fix them. Ask a TA if you need help
here. When everything looks good, program the board. If everything works, you should be able
to plug your audio-out signal into a speaker in the lab (or your own earphones) to hear a buzzing
noise at 220 Hz. To stop the buzzing, just turn your FPGA off.

3.4 Switching the Wave On and Off

Now you have a tone, but it can’t be toggled on and off without pulling the power to the FPGA
board. Let’s use the output_enable input of the tone_generator module to gate the square wave
output. When output_enable is 0, you should pass 0 to the square_wave_out output, but when
output_enable is 1, you should pass your square wave to square_wave_out.

Wire up the output_enable signal to the first slide switch (SWITCHES[0]) in z1top.

Run your design flow. Check for any warnings or errors and try to fix them. Ask a TA if you need
help here. When everything looks good, program the board through the hardware manager. You
should now hear a buzzing noise at 220Hz that can be turned on or off by toggling the first slide
switch.

You should verify that the tone is indeed 220 Hz by comparing it to a reference tone here: http:

//onlinetonegenerator.com/.

4 Design a Configurable Frequency tone generator

Let’s extend our tone_generator so that it can play different notes. You may start by adding
a 24-bit input to the tone_generator called tone_switch_period. Note you will also have to

6

http://onlinetonegenerator.com/
http://onlinetonegenerator.com/


modify your clock_counter to be 24 bits wide.

The tone_switch_period describes how often the square wave output switches from high to low
or low to high. For example a tone_switch_period of 284091 (0 d.p.) tells us to invert the square
wave output every 142045 clock cycles, which for a 125 Mhz clock translates to a ∼ 440 Hz square
wave. Here is the derivation:

125× 106 cycles

1 second
÷ 440 periods

1 second
=

284091 cycles

1 period

284091 cycles/period→ 142045 cycles/half-period

You may have to modify the architecture of your tone_generator to accommodate this new input
signal. You should reset the internal clock_counter every tone_switch_period cycles and should
also invert the square wave output. Remember to initialize any new registers declared in your
tone_generator to their desired initial value to prevent unknowns during simulation.

You should also handle the case when tone_switch_period is 0. In this case disable the tone
output.

4.1 Try the Configurable Frequency tone generator on the FPGA

Modify the top-level Verilog module z1top.v to include the new input to the tone_generator.
You should tie the tone_switch_period to SWITCHES[0] and BUTTONS[3:0], left-shifted by 9 bits
(effectively a multiplication by 512). This will allow you to control the tone_switch_period from
512 to 15872. Leave SWITCHES[1] to control output_enable initially; later, you can use it as an
extra bit’s worth of input. Here is a code snippet (incomplete):

tone_generator audio_controller (

.output_enable(SWITCHES[1]),

.tone_switch_period({18'd0, SWITCHES[0], BUTTONS[3:0]} << 9),

);

What other way(s) do you have to digitally mute your output signal?

Is the width of the bus assigned to tone_switch_period correct? Does it matter?

Run the usual synthesis, implementation and programming flow to put your new tone_generator

on the FPGA. Verify that toggling the switches and buttons changes the frequency of your tone_generator.

5 Checkoff

To checkoff for this lab, have these things ready to show the TA:

1. Be able to explain the differences between the behavioral and structural adder as they are
synthesized in both the high-level schematic and low-level SLICE views

7



2. Demonstrate your structural adder on the FPGA and show that the test passes.

3. Show the RTL you used to create your tone generator, and your calculations for obtaining
the square wave at 220Hz

4. Demonstrate your tone generator on the FPGA and show that some input mutes the output
noise

5. How will a higher clock frequency impact the frequency of the square wave output for a fixed
tone_switch_period?

You are done with this lab. In the next lab, we will simulate our digital designs in software, and
extend our tone_generator to read a song from a ROM and play it through our Audio Out.

Ackowlegement

This lab is the result of the work of many EECS151/251 GSIs over the years including:

• Sp12: James Parker, Daiwei Li, Shaoyi Cheng

• Sp13: Shaoyi Cheng, Vincent Lee

• Fa14: Simon Scott, Ian Juch

• Fa15: James Martin

• Fa16: Vighnesh Iyer

• Fa17: George Alexandrov, Vighnesh Iyer, Nathan Narevsky

• Sp18: Arya Reais-Parsi, Taehwan Kim

• Fa18: Ali Moin, George Alexandrov, Andy Zhou

8


	Before You Start This Lab
	A Structural and Behavioral Adder Design and also Inspecting the Schematic
	Build a Structural 14-bit Adder
	Inspection of Structural Adder Using Schematic and fpga_editor
	Schematics and FPGA layout

	Build a Behavioral 14-bit Adder
	Inspection of Behavioral Adder Schematics and FPGA Layout

	Designing a Tone Generator
	Audio Out
	Enabling the Audio Out signal in the constraints file
	Generating a Square Wave
	Switching the Wave On and Off

	Design a Configurable Frequency tone_generator
	Try the Configurable Frequency tone_generator on the FPGA

	Checkoff

