
EECS 151/251A FPGA Lab

Lab 1: Getting Set Up and Familiarizing Yourself with Tools

Prof. John Wawrzynek
TAs: Christopher Yarp, Arya Reais-Parsi

Department of Electrical Engineering and Computer Sciences
College of Engineering, University of California, Berkeley

1 Setting Up Accounts

1.1 Course website and Piazza

The course webpage can be found at http://inst.eecs.berkeley.edu/~eecs151/sp19/ and in-
cludes material for lectures, labs, and homework. You should register for a Piazza account and enroll
in the EECS 151/251A class as soon as possible (https://piazza.com/class/jqpr5zxqb225ed).
We will be using Piazza to make announcements and as a discussion forum for this class and for
the labs. The course website .

1.2 Getting an EECS 151 Account

All students enrolled in the FPGA lab are required to get a EECS 151 class account to login to
the workstations in lab. This semester, you can get a class account by using the webapp here:
https://inst.eecs.berkeley.edu/webacct

Once you login using your CalNet ID, you can click on ’Get a new account’ in the eecs151 row.
Once the account has been created, you can email your class account form to yourself to have a
record of your account information.

Now you should be able to login to the workstations we have available in the lab. Enter your login
and initial password in the login screen. Let the lab TA know if you have any problems setting up
your class account.

1.2.1 Changing your password

To change your default password, click on Applications on the top left toolbar on your workstation
desktop, then hover over System, then click on Terminal. In the terminal type and execute the
command: ssh update.cs.berkeley.edu

1

http://inst.eecs.berkeley.edu/~eecs151/sp19/
https://piazza.com/class/jqpr5zxqb225ed
https://inst.eecs.berkeley.edu/webacct


You can then follow the prompts to set up a new password. You can always use the same webapp
that you used to create your account to reset your password if you forget it.

1.3 Getting a Github Account

If you haven’t done so previously, sign up for a Github account at https://github.com/ with your
berkeley.edu email address.

If you already have a Github account that’s registered with your personal email address, don’t
create a new account. Instead, login to Github, go here https://github.com/settings/emails,
and add your berkeley.edu email address to your Github account.

1.4 Submitting Student Information Form

Once you have your accounts, make sure you have submitted the Google Form at https://goo.

gl/forms/xCzkVngWkuHs0qlS2 with your Github account username, email, and your class account
login (eecs151-xxx). This will allow us to provide you with lab and project related resources (like
github repos).

2 Getting Familiar with our Development Environment

2.1 Linux Basics

In this class, we will be using a Linux development environment. We will be using CentOS as our
Linux distro, which is a free version of Red Hat Linux. If you are unfamiliar or uncomfortable with
Linux, and in particular, using the bash terminal, you should definitely check out this tutorial:

https://www.digitalocean.com/community/tutorial_series/getting-started-with-linux

It is highly recommended to go through all four parts of the tutorial above, even if you already are
familiar with the content. To complete the labs and projects for this course, you will find it helpful
to have good command line skills.

One of the best ways to expand your working knowledge of bash is to watch others who are more
experienced. Pay attention when you are watching someone else’s screen and ask questions when
you see something you don’t understand. You will quickly learn many new commands and shortcuts.

2.2 Git Basics

Version control systems help track how files change over time and make it easier for collaborators
to work on the same files and share their changes. For projects of any reasonable complexity, some
sort of version control is an absolute necessity. There are tons of version control systems out there,
each with some pros and cons. In this class, we will be using Git, one of the most popular version
control systems. It is highly recommended that you make the effort to really understand how Git

2

https://github.com/
https://github.com/settings/emails
https://goo.gl/forms/xCzkVngWkuHs0qlS2
https://goo.gl/forms/xCzkVngWkuHs0qlS2
https://www.digitalocean.com/community/tutorial_series/getting-started-with-linux


works, as it will make understanding how to actually use it much easier. Please check out the
following link, which provides a good high level overview:

http://git-scm.com/book/en/Getting-Started-Git-Basics

Once you think you understand the material above, please complete the following tutorial:

http://try.github.com

Git is a very powerful tool, but it can be a bit overwhelming at first. If you don’t know what you
are doing, you can really cause lots of headaches for yourself and those around you, so please be
careful. If you are ever doubtful about how to do something with Git ask a TA or an experienced
classmate.

For the purposes of this class you will probably only need to be proficient with the following
commands:

• git status

• git add

• git commit

• git pull

• git push

• git clone

However, if you put in the effort to learn how to use some of the more powerful features (diff, blame,
branch, log, mergetool, rebase, and many others), they can really increase your productivity.

Git has a huge feature set which is well documented on the internet. If there is something you
think Git should be able to do, chances are the command already exists. We highly encourage you
to explore and discuss with fellow classmates and TA’s.

Optional: If you would like to explore further, check out the slightly more advanced tutorial written
for CS250:

http://inst.eecs.berkeley.edu/~cs250/fa13/handouts/tut1-git.pdf

3 Setting Up Github Access

We will be using Github as our remote Git server for this class. Github is a popular Git hosting
service which is home to many private and public (open-source) projects.

3.1 SSH Keys

Github authenticates you for access to your repository using ssh keys. Follow this tutorial to get
SSH keys set up (this should be done on a lab workstation when you are logged in with your eecs151
class account).

3

http://git-scm.com/book/en/Getting-Started-Git-Basics
http://try.github.com
http://inst.eecs.berkeley.edu/~cs250/fa13/handouts/tut1-git.pdf


First, create a new SSH key (do this on the lab computer):

ssh-keygen -t rsa -b 4096 -C "your_email@berkeley.edu"

Keep hitting enter to use the default settings.

Then, from your terminal run:

cat ~/.ssh/id_rsa.pub

Copy the public key that’s printed out in its entirety. Go here: https://github.com/settings/

keys, click on ’New SSH Key’, paste your public key into the box, and click ’Add SSH key’.

Finally test your SSH connection: https://help.github.com/articles/testing-your-ssh-connection/
#platform-linux.

If you have any issues, ask a TA for help.

3.2 Acquiring Lab Files

The lab files, and eventually the project files, will be made available through a git repository
provided by the staff. The suggested way to obtain these files is as follows. First, set up your ssh
keys as described above. Then run the command below in your home directory,

git clone git@github.com:EECS150/fpga_labs_sp19.git

Whenever a new lab is released, you should only need to do a git pull to retrieve the new files.
Furthermore, if there are any updates to the labs, git pull will fetch the changes and merge them
in.

For now, you will only have pull access to this repository. If you make any local commits, you will
not be able to push them to the remote server. Later on, each team will receive their own private
repo for the project, and you will be able to push and pull from that.

4 Our Development Platform - Xilinx Pynq-Z1

For the labs in this class, we will be using the Xilinx Pynq-Z1 development board which is built on
the Zynq development platform. Our development board is a printed circuit board that contains
a Zynq-7000 FPGA along with a host of peripheral ICs and connections. The development board
makes it easy to program the FPGA and allows us to experiment with different peripherals.

The best reference for this board is provided by Digilent: https://reference.digilentinc.com/
reference/programmable-logic/pynq-z1/reference-manual (a PDF version of this manual is
available in the fpga_labs_sp19/resources folder). Browse the documentation there to get a feel
for both what features the board has and, more importantly, what information the documentation
has, should you need it later.

Being a development board, the silkscreen print clearly identifies connectors of interest. You should
be able to recognize the most basic IO features on the board: GPIO LEDs, slide switches, and push-

4

https://github.com/settings/keys
https://github.com/settings/keys
https://help.github.com/articles/testing-your-ssh-connection/#platform-linux
https://help.github.com/articles/testing-your-ssh-connection/#platform-linux
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual


buttons. You should also be familiar with other basic elements of the board: input power socket,
power switch, and the USB programming port. The following image identifies important parts of
the board that may not have been obvious:

5



1. Zynq 7000-series FPGA. It is connected to the peripheral ICs and I/O connectors via PCB
traces.

2. ISSI DRAM chip

3. Power source jumper: shorting ”REG” has the board use the external power adapter as a
power source; shorting ”USB” has it rely on the 5 V provided by USB. The latter will work
unless your design needs to power a lot of external peripherals. Since we have labs and power
adaptors available, we avoid this.

4. Programming mode jumper

6



5. SD card slot

5 The FPGA - Xilinx Zynq-7000 7z020

To help you become familiar with the FPGA that you will be working with through the semester,
please skim Chapter 21: Programmable Logic Description of the Technical Reference Manual and
Chapter 2 of the Xilinx 7-series Configurable Logic Block User Guide. Pay particular attention to
pages 15-25 on Slices and pages 40-42 on Multiplexers. Answer the following questions (you should
be able to discuss your answers for checkoff):

5.1 Checkoff Questions

1. How many SLICEs are in a single CLB?

2. How many inputs do each of the LUTs on a Zynq-7000 FPGA have?

3. How many LUTs does the 7z020 have?

4. How do you implement logic functions of 7 inputs in a single SLICEL? How about 8? Draw
a high-level circuit diagram to show how the implementation would look. Be specific about
the elements (LUTs, muxes) that are used.

5. What is the difference between a SLICEL and a SLICEM?

6 Overview of the FPGA Build Toolchain

Before we begin the lab, we should familiarize ourselves with the CAD (computer aided design)
tools that translate HDL (Verilog) into a working circuit on the FPGA. These tools will pass your
design through several stages, each one bringing it closer to a concrete implementation. In previous
years, older evaluation platforms (the ML505) used older FPGAs (a Xilinx Virtex-5 LX110T) and
an older software suite (Xilinx ISE). Although there was a GUI, we had Makefiles to invoke each
subsequent program in the toolchain to carry out the complete synthesis and perform analysis.

Our new boards use Xilinx’s updated design software, the Vivado Design Suite. Vivado emphasizes
its powerful integrated scripting capabilities (using the Tcl language) and integration with other
high-level design tools (such as, for example, High-Level Synthesis - but more on that later). It
also has support for equivalent Makefiles and automation through Tcl. The GUI itself has the
disadvantage of being very manual to work with. Repeatedly changing and running parameters
quickly becomes tedious. Our eventual goal is definitely to automate the design process as much
as possible. For learning, however, the GUI has the invaluable property of guiding us through each
step of the process. Read through the following sections but don’t worry about the details for now.
We will run through the entire tool flow on a simple project at the end of this lab.

7

https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf


6.1 Synthesis

To run the synthesis step in the Vivado Design Suite (that is, turn your HDL into combinational
and sequential logic), select Run Synthesis in the Flow Navigator pane to the left other interface.
If this has been run before, the synthesized design can be inspected by selecting Open Synthesized
Design.

6.2 Implementation

The implementation step in the Vivado GUI is equivalent to the translation, mapping and place and
route steps in the manual pipeline. Again, this takes the logical circuit synthesized previously and
maps it to the physical logic devices our particular FPGA actually has. Select Run Implementation
in the Flow Navigator to run it, then select Open Implementation to inspect its outputs.

6.3 Xilinx Design Constraints (XDC)

How do we connect one of our signals to a physical device? How do we specify special properties of
the circuit that might matter for correctness and timing? The Xilinx Design Constraints file (with
the .xdc extension) specifies necessary properties of the design (just like the old User Constraints
File), and is a crucial input to the implementation phase. XDC is inspired by the Synopsis ASIC
synthesis toolchain and aims to be somewhat compatible. You are writing a form of TCL for the
Vivado TCL interpreter. More information can be found on page 22 of the Vivado migration guide.

Take a look at this snippet from the XDC inside lab1/lab1.srcs/constrs_1/new/z1top.xdc:

set_property -dict { PACKAGE_PIN L19 IOSTANDARD LVCMOS33 } [get_ports { BUTTONS[3] }];

This syntax assigns the properties PACKAGE_PIN and IOSTANDARD with the values L19 and LVCMOS33

(respectively) to the port BUTTONS[3], a signal we defined in our Verilog source. Each of these
properties has a separate consequence in the synthesis process:

• The pin to which the BUTTONS[3] signal should be connected to the physical pin L19 on the
FPGA package.

• The logic convention (maximum voltage, what ranges constitute low and high, etc) for that
port will be LVCMOS33.

6.4 Bitstream generation

To generate the programming file our FPGA will understand, we invoke Generate Bitstream in the
Flow Navigator.

8

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug911-vivado-migration.pdf


6.5 Timing Analysis

A timing analysis report can be generated under Synthesis in Flow Navigator, by expanding Open
Synthesized Design and selecting Report Timing Summary.

6.6 Design Reports

Reports are automatically generated at each step in the build flow. You should be able to discover
them under each of the expanded stages in the Flow Navigator. The Project Summary window
(under the Window menu) presents a nice summary of the reports generated through each step.
You will see some examples later in the lab.

6.7 Programming the FPGA

To send the bitstream to the FPGA with the Vivado GUI, we have to use the Hardware Manager.
This is accessible under Program and Debug in the Flow Navigator, right under Generate Bitstream.
Once connected to your FPGA over the USB JTAG interface, you can select Program Device in
the Flow Navigator (or in the Hardware Manager pane that opens) to perform the programming.

6.8 Toolchain Conclusion

This section was information dense. Don’t worry about understanding the internals of each tool
and the exact file formats they work with, especially for different Xilinx software generations. Just
understand what each step of the toolchain does at a high level and you will be good for this class.
You will use these kinds of tools regularly, but for now let the staff worry about making sure they
work in the first place.

7 Your First FPGA Design

Finally, let’s conclude with a simple example of a complete project. Throughout the semester, you
will build increasingly complex designs using Verilog, a widely used hardware description language
(HDL). For this lab, you will use basic Verilog to describe a simple digital circuit.

Now that you have cloned the fpga_labs_sp19 repository, you can cd to the fpga_labs_sp19/lab1
directory to see this lab’s skeleton files. You will note that there is a lab1.srcs directory and a
lab1.xpr file.

Past versions of this course used an FPGA development toolchain from the Xilinx ISE Design
Suite. The modern alternative, and that which we are now using for this course, is the Xilinx
Vivado Design Suite (“Vivado” for short). We will initially use Vivado’s Integrated Development
Environment (IDE) instead of any command-line tools, though you will eventually see that the
framework (especially with Pynq) is ripe for automation with TCL and Python scripting.

9



The lab skeleton files include the project meta data file, .xpr, a Verilog source file for a simple
top-level module, z1top.v, and a constraints file, z1top.xdc.

HDL source files like z1top.v (where the HDL is Verilog) describe the circuit that you want to
create on the FPGA. z1top.v describes a circuit that is the top-level of your circuit: it has access
to the signals that come into and out of the FPGA chip. Constraints files, such as z1top.xdc,
allow the engineer (you!) to tailor specific properties of the synthesized design to how they wish to
use their specific chip. This includes the crucial mapping between FPGA input/output pins and
signal names used in circuit descriptions. We’ll cover more on constraints files in the next lab, so
don’t worry about the details too much just yet.

7.1 Set up your Pynq-Z1

1. Plug in the power adaptor to provide mains power.

2. Insert the factory-imaged SD card to provide a boot OS for the onboard ARM (mostly for
use later).

3. Connect the USB interface to a spare USB port on your workstation.

4. Turn the board on.

7.2 Open the Lab 1 project in the Vivado Design Suite

In our Centos environment, press Alt-F2 to bring up a command dialog. Type the full path to the
vivado binary to execute it:

/opt/Xilinx/Vivado/current/bin/vivado

(You can also run this from a terminal or create a Desktop shortcut.)

Once in Vivado, open up the lab1/lab1.xpr project file. Look around the environment to try
and get a feel for the GUI. Open up the lab1/lab1.srcs/sources_1/new/z1top.v source file.
Again, this file contains a Verilog module description which specifies which signals are inputs into
the module and which signals are outputs.

The BUTTONS input is a signal that is 4 bits wide (as indicated by the [3:0] width descriptor). This
input signal represents the logic signals coming from the momentary push-button switches on the
bottom right side of your Pynq-Z1 board. You should inspect your board to find these switches
and confirm that there are 4 of them. Another basic input signal is SWITCHES, which is 2 bits wide
(as indicated by the [1:0] descriptor). Each of these two signals represents the slide switches on the
Pynq-Z1, located just to the left of the momentary switches (look for SW0 and SW1).

The LEDS output is a signal that is 6 bits wide (as indicated by the [5:0] width descriptor). This
output signal represents the logic signals coming out of the FPGA and going into the bank of LEDs
at the bottom right of the Pynq-Z1, just above the buttons. Almost. There are only 4 LEDs there;
2 more are tri-color LEDs located just above the slide switches in the middle.

10



In this file, we can describe how the slide switches, push buttons and LEDs are connected through
the FPGA. There is one line of code that describes an AND gate that takes the values of one of
the buttons and one of the slide switches, ANDs them together, and sends that signal out to the
first LED. Let’s put this digital circuit on the FPGA!

7.3 Synthesize and Program

1. In Vivado, locate the Flow Navigator pane to the left of the screen. Near the bottom, under
Program and Debug, click Generate Bitstream. Accept the default settings and wait. This
should invoke the dependent steps in the flow: Synthesis and Implementation (among other
things).

• Selecting Project Manager will give you a nice overview of the progress of various back-
ground steps while this happens.

• So will watching the Messages and Logs output.

2. When the synthesis and bitstream generation is done, select Open Hardware Manager and
connect to your FPGA.

• If you haven’t before, or the hardware manager says no devices are connected, select
Menu → Open New Target

• You should see xilinx_tcf listed under Harware Targets in the top pane. In the bottom
pane, two entries: arm_dap_0 and xc7z020_1. That’s good. Next → Finish.

3. Back in the Flow Navigator on the left, under Program and Debug, select Program Device.
The only option to program will be the FPGA, xc7z020_1. The default bitstream file path
should work too.

4. See if it worked! What happens when you push the BTN0 button? What about when you
change SW0? Both?

Go ahead and extend this example with more AND or other gates to see them in action!

8 Checkoff

To checkoff for this lab, have these things ready to show the TA:

1. Answers for the questions in section 5.1

2. Your programmed and functional board showing LED0 being controlled by BTN0 and SW0,
as well as any modifications you made to the design.

You are done with this lab. In the next lab, we will design a structural and behavioral adder in
Verilog and compare how the tools map the Verilog code you write into actual logic blocks. Then,
we will build our first interesting circuit, a tone generator that can play notes from your FPGA.

11



9 References and Resources

A very handy overview of what your Pynq-Z1 board can do is published by Digilent in the Pynq-
Z1 Reference Manual: https://reference.digilentinc.com/reference/programmable-logic/
pynq-z1/start

Ackowlegement

This lab is the result of the work of many EECS151/251 GSIs over the years including:

• Sp12: James Parker, Daiwei Li, Shaoyi Cheng

• Sp13: Shaoyi Cheng, Vincent Lee

• Fa14: Simon Scott, Ian Juch

• Fa15: James Martin

• Fa16: Vighnesh Iyer

• Fa17: George Alexandrov, Vighnesh Iyer, Nathan Narevsky

• Sp18: Arya Reais-Parsi, Taehwan Kim

• Fa18: Ali Moin, George Alexandrov, Andy Zhou

12

https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/start
https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/start

	Setting Up Accounts
	Course website and Piazza
	Getting an EECS 151 Account
	Changing your password

	Getting a Github Account
	Submitting Student Information Form

	Getting Familiar with our Development Environment
	Linux Basics
	Git Basics

	Setting Up Github Access
	SSH Keys
	Acquiring Lab Files

	Our Development Platform - Xilinx Pynq-Z1
	The FPGA - Xilinx Zynq-7000 7z020
	Checkoff Questions

	Overview of the FPGA Build Toolchain
	Synthesis
	Implementation
	Xilinx Design Constraints (XDC)
	Bitstream generation
	Timing Analysis
	Design Reports
	Programming the FPGA
	Toolchain Conclusion

	Your First FPGA Design
	Set up your Pynq-Z1
	Open the Lab 1 project in the Vivado Design Suite
	Synthesize and Program

	Checkoff
	References and Resources

