
EECS 151/251A Homework 8

Instructor: Prof. John Wawrzynek, TAs: Christopher Yarp, Arya Reais-Parsi

Due Monday, Apr 15th, 2019

Problem 1: Power Distribution [10pts]

Suppose you are designing an ASIC that draws 10 Watts peak power at 1 Volt Vdd. You plan to
use a process that has the following resistance values for the metal layers:

M1-M3 1.2 Ω/square
M4-M5 0.77 Ω/square
M6-M7 0.50 Ω/square
M9 0.36 Ω/square

To feed the power grid you plan to use 500 wires that are each 0.1mm long and would like to keep
the voltage variation to under 10%. In microns, what total width (across all wires) would you need
to use for each of the metal layer choices?

Solution:
First, we need to determine the current flowing through the feed lines into the power grid. The
peak power if 10 W on a system that operates at a VDD of 1 V.

P = IV (1)

Ipeak = Ppeak

VDD
= 10W

1V
= 10A (2)

The voltage after the power grid feed lines must be within 10% of the nominal VDD therefore,
the voltage drop across the feed lines must be ≤ 0.1 · 1V = 0.1V .

We can now calculate the allowed resistance of the feed lines into the power grid:

V = IR ≤ 0.1V (3)
10A · R ≤ 0.1V (4)

R ≤ 0.01Ω (5)

Version: 3 - 2019-04-23 12:21:16-07:00

EECS 151/251A Homework 8 2

If we assume all of the feed wires have the same resistance, the resistance required per wire is:

R = 1∑500
i=1

1
Rwire

(6)

R = 1
500

Rwire

(7)

R = Rwire

500 (8)

Rwire = 500R (9)
Rwire ≤ 5Ω (10)

The resistance of an individual wire can be computed with:

Rwire = R�
l

w
≤ 5Ω (11)

R�l

5 ≤ w (12)

R�0.1mm

5 ≤ w (13)

R�0.1mm

5 ≤ w (14)

w ≥ R�0.02mm (15)

For the total width across all feed wires (assuming all are identical):

wtotal =
500∑
i=1

w = 500 · w (16)

wtotal ≥ R�10mm (17)

Now, we simply need to substitute R� for each series of metal layers.

Layers wtotal ≥
M1-M3 12 mm
M4-M5 7.7 mm
M6-M7 5 mm
M9 3.6 mm

Problem 2: Power Distribution [10pts]

For the ASIC design above, you plan to supply Vdd and GND to the chip using solder bump
connections, each with 25pH of inductance. 50% of the peak power is dynamic switching power.
Assume that the peak current rushes into the chip at the beginning of each clock cycle over 250ps.
Again, you would like to keep the voltage variation to within 10%. How many bump connections
do you need?

Version: 3 - 2019-04-23 12:21:16-07:00

EECS 151/251A Homework 8 3

Solution:
We first need to capture some parameters from the previous problem. This design runs with a
VDD of 1 V, a peak power of 10 W.

In this problem, we are given that 50% of the peak power is dynamic, resulting in 5 W peak
dynamic power.

The peak current can then be calculated as I = P
V = 5W

1V = 5A.

The maximum voltage variation allowed in this is 10%. The voltage variation is allowed to be
Vdrop = 0.1 · 1V = 0.1V .

In this problem, we are asked to consider both VDD and ground pins. In the worst case, the max
current flows from VDD into the on chip capacitance and, simultaneously, the same magnitude
current flows out charged on-chip capacitors to ground. This current going into/out of the chip
also includes any short circuit current.

A diagram of the package solder bumps is shown below. Vdrop = VDDbump +VGNDbump ≤ 0.1V .

25pH 25pH 25pH

25pH 25pH 25pH

VDD bump

+

-

VGND bump

+

-

VDD Internal

VGND Internal

The voltage drop across an inductor is LdI
dt .

Recall that inductors in parallel have an effective inductance of L = 1
1

L1
+ 1

L2
+··· . When n parallel

inductors have the same inductance L0, the effective inductance is L = L0
n .

Using these properties, we can find the following expression:

Vdrop = VDDbump + VGNDbump (18)

= LDD
dI

dt
+ LGND

dI

dt
(19)

= Lbump

nDD

dI

dt
+ Lbump

nGND

dI

dt
(20)

=
(1

nDD
+ 1

nGND

)
Lbump

dI

dt
(21)

Version: 3 - 2019-04-23 12:21:16-07:00

EECS 151/251A Homework 8 4

We want to minimize the total number of pins, ntot = nDD + nGND that are devoted to power
and ground. This minimization occurs when n = nDD = nGND. To prove this is the case, you
can solve for nGND in the Vdrop expression, substitute that into the ntot expression, take the
first derivative, and set to zero. Alternatively, you can ask Mathematica or WolframAlpha to
minimize the expression for ntot given the Vdrop constraint, nDD > 0, and nGND > 0.

With this observation, we can further reduce the Vdrop expression:

Vdrop =
(1

nDD
+ 1

nGND

)
Lbump

dI

dt
(22)

= 2Lbump

n

dI

dt
≤ 0.1V (23)

n ≥ 2Lbump

0.1V

dI

dt
(24)

n ≥ 2 · 25 × 10−12

0.1V

(5A − 0
250 × 10−12s

)
(25)

n ≥ 10 (26)

Therefore, at least 10 solder bumps must be devoted to VDD and at least 10 solder bumps
devoted to GND.

Problem 3: Clock Uncertainty [12pts]

For each of the 7 sources of clock uncertainty listed in the lecture notes, explain how each can lead
to clock skew, clock jitter, or both.

Solution:
1. Clock Generation: [Primarily Jitter] Clock generation can introduce jitter into the clock

signal due to noise injected into the PLL. Noise can come from several sources including
the power supply and unintentionally resonant circuitry. There isn’t much opportunity
for skew at this point in since the clock signal has not been split and distributed yet.

2. Device Variation: [Primarily Skew] This primarily contributes to clock skew. Device
variations may cause different devices to have different intrinsic delay, thus injecting
skew. Contributions to jitter could occur if the device variations unintentionally caused
resonant circuits that inject noise into the clock. Device variations may make other
sources of jitter more noticeable (ex. through increased coupling).

3. Interconnect: [Primarily Skew] The interconnect primarily contributes to skew (with the
exception of coupling which is treated separately). The primary causes are length differ-
ences which cause capacitance load differences and speed-of-light propagation differences.

4. Power Supply: [Both] The power supply is one of the principle components which injects
jitter into the clock signal. Noise in the power supply can cause random delay differences
in devices, thus introducing random jitter in the clock distribution. In addition, power
supply difference to different parts of the chip (ex. IR drop) can cause deterministic
changes in device delay for different parts of the chip.

Version: 3 - 2019-04-23 12:21:16-07:00

EECS 151/251A Homework 8 5

5. Temperature: [Both] Many device parameters vary based on temperature. These varia-
tions can cause device delays to change. For relatively stable temperatures, these delay
variations can introduce skew. For rapidly changing temperatures, this same effect can in-
troduce jitter. Increased temperature also increases thermal noise which may be injected
into the clock signal causing jitter.

6. Capacitive Load [Both]: Differences in capacitive load cause it to take more or less time
to charge/discharge a given net. With static capacitive loads, this contributes to clock
skew. The capacitive load is actually voltage and data dependent which introduces jitter.

7. Coupling to Adjacent Lines [Both, Depends]: Coupling to adjacent lines can cause cross
talk between the lines. This can inject noise into the clock signal resulting in jitter.
Coupling to lines that generally held a constant value can also introduce a deterministic
clock skew.

Problem 4: Clock Load [8pts]

You are designing an ASIC with a total clock load of 10pF based on a clock grid with minimal
resistance. With your 7nm Finfet process, a single fin has an Reff of 12KΩ. How many fins would
you need in the final stage of the clock driver to achieve a clock rise time (to 50%) of 10ps?

Solution:
In this problem, we need to compute the RC time constant of the clock network.

Recall that the expression for the transient voltage across a capacitor while charging is:

V = VDDe
−t
RC (27)

and the equation for the transient voltage across a capacitor when discharging is:

V = VDD

(
1 − e

−t
RC

)
(28)

For this problem, we are interested in the time to charge/discharge to 0.5VDD. Solving the
above equations for time yeilds the same equation:

t = − ln(0.5)RC (29)

In order to achieve a clock rise time of 10ps with a capacitive load of 10 pF, the resistance in
the final stage of the clock driver must be:

t = − ln(0.5)RC ≤ 10ps (30)
−R ln(0.5)10 × 10−12 ≤ 10 × 10−12 (31)

− ln(0.5)R ≤ 1 (32)
R ≤ 1.4427 (33)

Version: 3 - 2019-04-23 12:21:16-07:00

EECS 151/251A Homework 8 6

Now that we know the required resistance, we need to know the number of fins required to
attain that resistance. A common technique in FINFET technologies to reduce the effective
RDS is for a transistor to have multiple, parallel, fins. This is equivalent to having multiple
parallel transistors with their sources, drains, and gates shared. Using multiple fins is a result
of the design constraints on individual fins. These multiple fins provide multiple parallel path
that effective reduce the effective RDS across the transistor.

Recall that resistance in parallel leads to an effective resistance of R = 1
1

R1
+ 1

R2
+··· . If n resistors

have the same value R0, the effective resistance is R = R0
n .

Therefore, to have an effective resistance of R ≤ 1.4427:

R ≤ 1.4427 (34)
Rfin

n
≤ 1.4427 (35)

12000
1.4427 ≤ n (36)

n ≥ 8317.8 (37)

Therefore, at least 8318 fins are required in the final clock driver.

Problem 5: FIFO Design [20pts]

The FIFO block presented in lecture has the following inputs Din, WE (write enable), RST (reset),
CLK, RE (read enable), and the following outputs, FULL, EMPTY, Dout. Your job is to design a
8-bit wide FIFO based on a simple dual port memory that is 1K by 8-bits. Assume there are two
counters that you can use for the read and write pointers. The counters increment on the rising
edge of the clock when their clock enable (CE) signal is true. The counters are 10-bits wide and
wrap-around to 0 after they reach their max value. You also can use simple flip-flops as flags to
hold the state (FULL/EMPTY) of the FIFO. For simplicity, you may assume that the external
producer will never write when full and the consumer will never read when empty.

Design the control logic for the FIFO and draw a block diagram of its implementation using the
counters, the memory block, and your control logic.

Solution:
We keep two counters, wptr and rptr. Initially, and on every reset RST, these are both 0. A 1K
memory needs a log2(1024) = 10 bit address. Since the counters are both the 10-bit counters
described in the problem, we can immediately use them as the read and write addresses to our
dual-port memory (raddr and waddr respectively). When the counters are equal, as they are
just after a reset, the FIFO is empty. Whenever adding 1 to the wptr would make it equal to
the rptr, the FIFO is full.

Whenever a read is issued (RE high), the memory block is enabled for read and rptr is allowed
to be incremented. Likewise, whenever a write is issued (WE is high), wptr is incremented and
the memory has write enabled.

Version: 3 - 2019-04-23 12:21:16-07:00

EECS 151/251A Homework 8 7

Since we can assume that external circuitry does not attempt to read from the FIFO when it
is empty or write to the FIFO when it is full, this is the only control circuitry we need.

Note however that the assumption of external coordination between full and empty states
means we can’t be sure what happens when, for example, the FIFO is full and an external
circuit both reads and writes at the same time. It’s possible for us to support this, but we
currently don’t. Since behaviour in this case is not specified, it is omitted.

1024 x 8wdata

waddr

rdata

raddr

RST WE RE

+1

wptr
10-bit counter

CERST

rptr
10-bit counter

= FULL

WE

= EMPTY

RE

D
in D

out

CERST

RST

CLK

10 10

8 8

Problem 6: Memory Blocks [10pts]

You are given a memory block that is 256x16. Show how you would use multiple instances to design
a memory that is 1Kx32.

Solution:

Version: 3 - 2019-04-23 12:21:16-07:00

EECS 151/251A Homework 8 8

256x16
Addr

DataW

DataR

WE

256x16
Addr

DataW

DataR

WE

256x16
Addr

DataW

DataR

WE

256x16
Addr

DataW

DataR

WE

256x16
Addr

DataW

DataR

WE

256x16
Addr

DataW

DataR

WE

256x16
Addr

DataW

DataR

WE

256x16
Addr

DataW

DataR

WE

addr[7:0]
8

0
1
2
3

0
1
2
3

==00

==01

==10

==11

addr[9:8]
2

data_in[15:0]

w_en

data_in[31:16]

data_out[15:0] data_out[31:16]

16

16

16 16

16

16

16

16

16

16

16

16

Problem 7: Memory Blocks [8pts]

Write the Verilog code for a synchronous read memory block that is 4Kx32 with two read ports.

Solution:
module RAM(

input clk,
input [11:0] addr_rd_a,
input [11:0] addr_rd_b,
input [11:0] addr_wr,
input [31:0] din,
input w_en,
output [31:0] dout_a,
output [31:0] dout_b

);

reg [31:0] data [4095:0];
reg [11:0] addr_rd_a_reg;
reg [11:0] addr_rd_b_reg;

always @(posedge clk) begin
//Write
if(w_en) begin

data[addr_wr] <= din;
end

Version: 3 - 2019-04-23 12:21:16-07:00

EECS 151/251A Homework 8 9

//Address register
addr_rd_a_reg <= addr_rd_a;
addr_rd_b_reg <= addr_rd_b;

end

//Read based on registered addr (syncronous)
assign dout_a = data[addr_rd_a_reg];
assign dout_b = data[addr_rd_b_reg];

endmodule

You can verify that the RAM is inferred as a synchronous read RAM by inspecting the output
of Vivado. By looking at the synthesized design, this RAM is converted into 8 RAMB36E1
blocks. Each is configured with the synchronous property enabled. Note fro the Xilinx 7 Se-
ries FPGA Memory Resources manual (https://www.xilinx.com/support/documentation/
user_guides/ug473_7Series_Memory_Resources.pdf) that RAMB36E1 modules can be used
in several configurations including one that is 4Kx9. For 32 bits, 4 of these RAMB36E1 mod-
ules are required. The two read ports are implemented by creating a copy of the RAM for a
total of 8 RAMB36E1 blocks. The write address and din are fed to all RAMB36E1 modules.

Problem 8: Memory Implementation

(a) [15pts] Consider the design of a (very) small asynchrous-read memory block of 4 words by
4-bits each. You want to implement the memory cells as positive edge-triggered flip-flops.
Draw the circuit diagram for your design using the flip-flop cells, multiplexers, and logic gates.

(b) 251A only. [15pts] Now consider the redesign of the memory from part a) using latches
instead of flip-flops. For this design, as above, the write operation occurs on the positive edge
of the clock, but now the output data on a read become available after the failing edge of the
clock.

Solution:

Version: 3 - 2019-04-23 12:21:16-07:00

https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf

EECS 151/251A Homework 8 10

8.1 Part a

en

en

en

en

waddr[0]
waddr[1]
w_en

data_in
4

0
1
2
3

raddr
2

data_out
4

4

4

4

4

8.2 Part b

waddr[0]
waddr[1]w_en

data_in
4

0
1
2
3

raddr
2

data_out
4

4

4

4

4

en

Latch

en

Latch

en

Latch

en

Latch

en

Latch

en

Latch

clk

Note in this solution that left most latch is disabled when the positive clock edge occurs, saving
the value of data_in. The w_en signal is also latched and saved on the positive clock edge.

Version: 3 - 2019-04-23 12:21:16-07:00

EECS 151/251A Homework 8 11

While the clock is high, the latch associated with that address is allowed to go transparent,
passing the latched value of data_in. On the negative edge of the clock, this latch becomes
opaque and saves the value. Note that this structure looks very similar to how we construct
Flip-Flops out of latches - this is not a coincidence. We effectively share the first latch in a
Flip-Flop across all of the addresses.

There is a similar solution to what was presented here which uses a latch after the multiplexer
instead of at data_in. This design has an added requirement that w_en and the write address
must be stable before the preceding negative clock edge to avoid erroneously allowing one of
the memory latches to become transparent.

Problem 9: Cache Implementation [12pts]

Consider the design of a 32KB direct mapped cache memory, with a block size of 8-Bytes, and a
valid bit for each cache block. This cache will be used in a system with a 32 bit address space. How
many total bits of memory would be needed to implement the cache? Sketch the block diagram of
the cache implementation.

Solution:
The cache is 32 KB = 32 × 1024 = 32768 bytes. Since each block (a.k.a. “line”) is 8 bytes, the
cache fits 32768/8 = 25+10/23 = 212 = 4096 blocks. We’re told that each block needs 1 valid
bit. A modified bit isn’t necessary, presumably because the cache uses a write-through update
policy.

To address each byte in a block takes log2(8) = 3 bits. To index each of 4096 blocks takes
log2(4096) = 12 bits. In a 32-bit address space, that leaves 32 − 3 − 12 = 17 of the most
significant bits as identifying tags. (Another way to think about this is that addresses will
map to the same byte in a cache block every 212+3 addresses, and the upper 17 bits of address
are needed to disambiguate such collisions.) We need to store 17 bits of tag information to
uniquely associate blocks to their source addresses.

In all, that means we need 4096 × (8 × 8 + 17 + 1) = 335872 bits for the cache: 4096 blocks
and 64 bits of data per block, 17 bits of tag information, and 1 valid bit.

The cache implementation is as follows. A read operation is shown. On a read, re is enabled
and we is disabled. Bits 3 to 14 (inclusive) of the CPU request address are used as the index
into the cache. The upper 17 bits of the CPU request address are used as the tag: these are
compared to the existing tag in the indexed set for equality. If they are equal, and the valid
bit for that line is set, there is a hit. One bit of the request address selects the upper or lower
word within the CPU line to return.

Version: 3 - 2019-04-23 12:21:16-07:00

EECS 151/251A Homework 8 12

valid (1 bit)

tag (17 bits) data (64 bits)

SRAM

addr

tag

12

17we re

read addr

31 15

2

0314

17

10

data

1

line [31:0]

line [63:32]
line

64

hit

0

1

4
0

9
6

 r
o

w
s

==

On a write, assuming a hit, the re input would be disabled and we would be enabled. The
SRAM input data (not shown) would have the new contents of a the destination block present
with the corresponding word within that block modified according to the CPU request (64 bits
in total).

Version: 3 - 2019-04-23 12:21:16-07:00

	Power Distribution [10pts]
	Power Distribution [10pts]
	Clock Uncertainty [12pts]
	Clock Load [8pts]
	FIFO Design [20pts]
	Memory Blocks [10pts]
	Memory Blocks [8pts]
	Memory Implementation
	Part a
	Part b

	Cache Implementation [12pts]

