EECS 151/251A Homework 7

Instructor: Prof. John Wawrzynek, TAs: Christopher Yarp, Arya Reais-Parsi

Due Monday, Apr 8%, 2019

Problem 1: Fast Unsigned Integer Comparison [15 pts]

Consider the design of a combinational logic circuit for comparing unsigned integers. The circuit
accepts two n-bit unsigned integers, A and B, and generates an output, eq, that is equal to 1 iff
A and B are equal, and another output, 1t, that is equal to 1 iff A is less than B. We would like
the circuit to have relatively small delay for large n, so you need take an approach that will lead
to delay scaling with log(n). One solution would be to use a fast subtractor circuit, but that is not
the correct answer here. Hint: Divide the input words in half and think about defining the function
recursively.

Sketch out enough of your circuit so that we understand your approach and detailed circuits.

Unsigned numbers have a property that allows us to split the comparison operation into 2
parts. We can the numbers we are comparing into their MSBs and LSBs. Let’s say operand
A is split into {Ausp, Aisp} and operand B is split into { By, Bisp } with Ajg, having the same
number of bits as Bjgp.

If A, < Bye then we know that A < B. The LSBs cannot change this conclusion because
the LSBs combined contribute less that the least significant bit of the A,,s and Bj,s . For
Ay < Bpush, they must differ by at least the least significant bit of A,,,4 and B,,. Likewise,
Apsp > Bmsp then we know that A > B.

It is only in the case where A,,s; = B that we need to look at the LSBs. In this case, if
Ay < Bjgp then we know that A < B. If Ay = Bjg then we know A = B.

Therefore, we can construct the unsigned comparison recursively by splitting the operands and
using 2 comparison units, each of which is operating on a smaller word width. To have O(logn)
propagation delay, the operands should be split into equal parts in each stage.

The base case is the comparison of 2 single bit operands. In this case, the equivalence check is
an XNOR gate. The LT check is A'B.

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 2

Recursive Case Base Case (1 Bit Operands)
Operand A MSBs | LSBs] | OperandA [T7)] “»—eq

Operand B MSBs | LSBs |
p | Operand B %j:}lt

A Compare MSBs A Compare LSBs

B eq It B eq It

J
[

€q

Problem 2: Extending RISC-V [8 pts]

Based on the RISC-V datapath presented in lecture that included up to the 1w instruction, draw a
modified single cycle datapath that could execute a new add instruction named addm which takes
one of its operands from memory and has the following behavior:

Reglrd] <- Reglrs2] + DMEM[Regl[rsi] + offset]
You don’t need to describe how the instruction would be encoded in the instruction word.

Solution:

There are several options for adding this instruction. One method involves inserting a new
adder which calculates memory addresses based on rsl and the immediate. The value from
memory is then fed back to the ALU to be added to rs2. Alternatively, the ALU can be used
to compute the memory address. A separate adder is then inserted which takes the memory
value and adds it to rs2.

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 3

Regll o L;

Reglrs1]
+4 . DataD Rl ALU DMEM
inst[11:7]
» AddrD Addr DataR » 0
Reglrs2] A
. . 5
PC !nst[19415] AddrA DataA [
IMEM inst[24:20] AddrB DataB | | 1 K
[A
inst[31:0] Imm
Gen
inst[31:0] ImmSel RegWEn BSel ASel ALUSel MemRW WBSel

Reql] Reglrs1] —|_,
4 L DataD DMEM 1
+ .) ata
- inst[11:7] » AddiD » Addr DataR [>0
PC insti19:13] » AddrA DataA L 25
IMEM inst[24:20] » AddrB DataB 3 +
7'}
inst[31:0] Imm
Gen
inst[31:0] ImmSel RegWEn BSel ALUSel MemRW WBSel

Problem 3: 3 Stage RISC-V Pipeline Branching [8 pts]

Based on the RISC-V single cycle datapath in the lecture slides, draw a simplified version of the
datapath that includes just those components necessary for the branch instructions.

Now, draw another version of the datapath with modifications necessary to permit the 3-stage
pipelining scheme with the “predict ‘not taken’” strategy described in lecture. You don’t need to
show the details of how to kill an instruction. However, remember that in this approach only one
instruction is killed when a branch is taken. For this part assume that the instruction memory has
asynchronous read.

Depending on your implementation, you may decide to merge the ID stage of the 5 stage
pipeline into either the IF or X stage. Either will work. In the case of merging ID with the IF
stage, it is important to pipeline the relevant portions of the instruction to be used in the X
stage for control.

In the example shown below, the next PC is assumed to be PC+4. This predicts that a branch

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 4

will not be taken. The branch comparison happens in the X stage and the branch address is
muxed into the PC. At this point, one incorrect instruction has been fetched and is sitting at
the input to the IF /X pipeline register. This instruction must be converted into a NOP. before
it is allowed to progress through the pipeline.

inst[11:7]
—»| »
1
Regll b
Regl(rs1]
L »{ DataD % ALU
AddrD
. whAddY Reglrs2]
!nst[19:15] » AddrA DataA ° |
inst[24:20] » AddrB DataB $ i1 / ’—'

v

- '
Branc
| Cmp
inst[31:0] mm. 4
5 Gen
WA
7 A
inst[31:0] ImmSel RegWEn BrUn BrEq BrLT BSel ASel ALUSel MemRW WBSel
pCsel Control

Problem 4: 3 Stage RISC-V Pipeline [8 pts]

Using the RISC-V datapath presented in class that includes the 1w instruction, draw a new version
of the datapath that is modified to permit the 3-stage pipelining scheme described in lecture.
Remember that the load delay should be only 1 cycle. You do not need to show the details of
instruction stall in the case of an instruction dependent on the load. Assume that both the IMEM
and DMEM have asynchronous read.

Solution:

A pipeline stage can be inserted between the ALU and the DMEM. As compared to the 5
stage pipeline, the implementation shown below merges the WB stage into the M stage. The
address is calculated in the X stage and is passed to the M stage on the following positive clock
edge. The memory is then read and the value is fed back to the register file along with the
pipelined register write address and register write enable lines. The value is registered on the
next positive clock edge, resulting in a 1 cycle latency for the load operation

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 5

inst(11:7] ;7J
Reg [] Reglrs1] o
e
ALU DMEM
—» DataD
—d} AddrD > Addi DataR
W4) wbAddr ' Reglrs2] ™ ' o
PC o315 o Addn Dotan tD_, i
IMEM AddrB DataB » |
Ly L 3
inst[31:0] Imm’ ™
| Gen A
A il
. i
inst[31:0] ImmSel RegWEn BSel ALUSel MemRW WBSel
PCSel Control

Problem 5: 3 Stage RISC-V Pipeline with Synchronous Memory [6
pts]

Now consider how your answers to the previous two problems would change if the memories we
used for IMEM and DMEM had synchronous read instead of asynchronous read.

Synchronous read is defined as follows. On the rising edge of the clock, the read address is registered
on the read port and the stored data is then sent to the output. We assume the read address hold
time is short (similar to registers), and the access time is long compared to the clock period. (That
is the reason we dedicate an entire pipeline stage to instruction fetch and to data memory access.)

Synchronous memories register the read/write address on the positive edge of a clock cycle
and then proceed to perform the read or write action as requested. Their impact on timing
is very similar to that of a register with actions only taking place after a positive clock edge.
One method to deal with this increased latency is to relocate the memories to be in line with a
pipeline register. This is the technique used below with DMEM which was moved in line with
the X/M register.

The instruction memory is a little trickier. We could move it to be in line with the IF/X
pipeline register. However, this would result in a long critical path which would include the
instruction memory, the register file (read), and the ALU. Because of this, we will keep the
IMEM completely in the IF stage. Proceeding with an unmodified IF stage would unintention-
ally add another pipeline stage to the design (between the PC and the IMEM). This would
require 2 instructions to be killed for each branch mispredict or jump. However, IMEM can be
placed in line with the PC with the target address (PC+4 or branch/jump address) fed into
the IMEM address port. With this configuration, PC will output the address of the instruction
at the output of IMEM.

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 6

inst[11:7]
Ly inst[11:7] N J
Vv o R
Ne s Regl] L’? LA
g L»| DataD - Regls] | 0, ALU DMEM
<
whAddr| A49D Reglrs2] > addr DataR [
fnst[19:15] > AddrA DataA —>0 R -
IMEM inst[24:20) » AddrB 5 DataB T ol | e
> - A v
7 Branch
Cmp
inst[31:0] I mm. A ™
£ Gen > T
WA\
k. T v
inst[31:0] ImmSel RegWEn BrUn BrEq BrLT BSel ASel ALUSel MemRW WBSel
PCSel Control

Problem 6: 3 Stage RISC-V Pipeline Bypassing [5 pts]

We have a 3-stage pipelined RISC-V datapath that passes the 32-bit instruction through the
pipeline. The instruction register separating the I and X stages is IRegrx and between the X
and M stages is IRegx . As shown in page 63 of the lecture notes, the ALU has a bypass mux
which allows ALU data hazards to execute without any delay. Describe the logic needed in the
controller for correct operation in the case of back to back r-type instruction execution. You do not
need to show detailed circuit diagrams, but describe precisely what operation(s) need to be done.

Solution:

Let’s say that we have two R-type instructions, A and B, B immediately following A. We’ll
look at the case where bypassing is sometimes required: when an R-type instruction (A) is in
the M stage and a R-type instruction (B) is in the X stage. Bypassing (or forwarding) a result
from the I Regx s register back to one (or both) of the ALU input ports is only required if rs0
or rsl of B are equal to rd of A. This is because the result of A has not yet been written back
into the register file and will not be available during the X stage of B.

If rslp = rda, then the value from IRegx) must be bypassed to the rsl input of the ALU
by setting the corresponding mux select line. If rslp # rd4, then the mux corresponding to
the rs1 input of the ALU is set to allow the value read from the register file (or the PC of B)
to be passed to the ALU.

Likewise, if 7s2p = rda, then the value from IRegxas must be bypassed to the rs2 input
of the ALU by setting the corresponding mux select line. If rs2p # rd4, then the mux
corresponding to the rs2 input of the ALU is set to allow the value read from the register file
(or the immediate) to be passed to the ALU.

Problem 7: Line Drawing Accelerator [20 pts]
Draw a block diagram for the design of a datapath and controller for an implementation of the line-
drawing accelerator presented in class. For this problem, you may assume that x¢o < z1,y0 < ¥1,

and slope is < 45°.

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 7

Try to minimize the number of cycles per output result.

You don’t need to show your design to the gate level and may use components at the level of
arithmetic blocks, comparator blocks, muxes, registers, etc. Make sure you show the details of how
the looping is controlled.

Assume that the xg, x1, yo and y; values are available in registers. The outputs from the accelerator
should be a signal, wr, that indicates when it is time to write a pixel, and x,y which define the
pixel location to write.

One solution is shown below. After an initial set-up cycle, this solution will produce a result
every cycle until complete.

Note however that this solution is not optimal; the critical path is quite long. A more optimal
solution would introduce additional registers and use pipelining to reduce the clock period.

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7

Vv Vv

start loop_ready
orl

right shift
\V4 (divide by 2)

Xo —

deltax B

error
B \% add Vv
subtract A D

v b =
Xq ——4
compare
A<O
B
subtract
—A
X
V en
V 0
Yo — deltay D
v 1
B Q
subtract — add 1 1) wr
\Y A A
Y1 —
Y
V en ! done
0
D
Ii 1
Q compare
A<=B
add 1 A B
A

The accelerator has a set-up stage and a loop stage. Control between the two is managed using
a loop_ready signal, which is 0 in the first cycle and 1 in cycles following the first: a start
signal - or just a plain 1 if we assume that the accelerator is already “started” - is shifted into
the loop_ready register by the time the set-up completed. All registers are set to 0 on reset.
We make use of the enable pins on the x and y registers when their value would be unchanged
in the algorithm.

On the first cycle, deltax, deltay and error are computed and stored in registers.

On every cycle of the loop;

e as long as the value in x is less than or equal to x1, wr is high to signal a write at the

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 9

current x and y values;
e x is incremented;
e y is incremented only when error less deltay is negative;

o error takes the value of error - deltay or error - deltay + deltax, depending on
whether the former is negative.

The loop ends when x is greater than x1, at which point both the x and y registers are disabled.
Note that as drawn, the error register must also be disabled to stop needless computation
beyond completion. An elegant way to do this is to reset the loop_ready registers, which
would prepare the circuit for the next invocation with new parameters.

Problem 8: Energy Efficiency Improvements [10 pts]

You are given the circuit shown below with 7¢r, = 16ns, and Tsetup = Tak—g = 1ns.

\Y% \Y%

On average, at some Vy, the energy for one data item passed through the combinational logic block
is 1 Joule. The registers each consume 0.1 Joule on average for each new data word stored.

Your application for this circuit requires results be computed at a rate of 50MHz (one result per
cycle). Also, for this application, the latency from input to output is not important.

Assume the combinational logic block can be split evenly (in terms of both delay and energy) into
multiple blocks.

Devise a scheme that would improve the switching energy efficiency while meeting the application
requirements. Compare the switching energy per result of the original circuit and your new one.

Assume that a 1/n reduction in clock frequency can accommodate a 1/n reduction in Vyg.

The given solution is running slightly faster than is required by the critical path at the specified
voltage level (2 ns positive slack for 50 MHz clock). Increasing the clock period by a factor
1/(18/20) would allow Vdd to be decreased by a factor 18/20.

Since switching power is Pgyw = %aCdedF , the power ratio between version, when F' and V4

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7

10

are scaled by k is:

PSW new Vd2d neanew o (kvdd orig)2kF0rig

= = = k3
. 2 . 2 .
Psw orig Via origF orig Via origF orig

However, changing the clock frequency by a factor of k changes the amount of time it takes for
the operation to complete by a factor of 1/k. Since Energy = Power*Time, the net scaling in
energy /operation in the logic is k2.

For the scaling above, the energy per operation becomes (1J + 0.1(2).J)(18/20)? = 0.972J
compared to 1.2J in the original.

A more substantial energy efficiency improvement can be gained by pipelining the combina-
tional logic. When pipelining, the critical path is reduced which allows the clock rate to be
increased without changing V4. Since this application does not require a clock rate increase,
the clock frequency and Vyy can both be scaled down from the new clock frequency made pos-
sible by pipe-lining. The total amount of time an operation take to get through the pipeline
changes to become the number of pipeline stages * the delay through each pipeline stage.

This changes the energy/op scaling factor because power is scaled by k3 but time/op is now
scaled by n/k. This leads to energy/op scaling by nk?.

Let’s divide the combination logic into 2 equal parts (from the perspective of delay) and insert
a pipeline register between them. We incur the additional energy use of the pipeline register
but can now reduce the combinational logic delay to 8 ns. This leads to a critical path of 10
ns. This allows clock frequency and Vyy to be scaled by a factor of 1/2 to reach the target clock
frequency of 50 MHz (20 ns period). The total energy per operation of this pipelined version
is (1J +0.1(3).J)(2)(1/2)? = 0.65.J.

This process can be tried again by splitting the combinational logic into n segments with n-1
additional regsiters.

Assuming the combinational logic is evenly split, the critical path when pipelined by an integer
factor n is 16/n + 2 ns. The energy/operation is (1 + 0.1(1 + n))((16/n + 2)/20)*n

To find when the energy/op is minimum, we can take the first derivative of the above expression
and get
0.027 — 0.704n"2 — 0.02n

The only real zero is at n ~ 4.431.

The second derivative is:
0.002 + 1.408n 3

This is positive for n ~ 4.431 identifying n ~ 4.431 as a local minimum.

Since n must be an integer, we will look at n =4 and n =5

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 11

For n = 4, the critical path delay is 16/4 + 2 = 4/3 ns. The energy/operation is (1 + 0.1(1 +
4))((16/4 +2)/20)2(4) = 0.54.].

For n = 5, the critical path delay is 16/5 4+ 2 = 26/5 ns. The energy/operation is (14 0.1(1 +
5))((16/5 + 2)/20)2(5) ~ 0.5408.].

Therefore, the minimum energy /operation is achieved for this circuit when pipelined by a factor
of 4 yielding an energy/op of 0.54.J.

Problem 9: Race to Halt [4 pts]

An effective scheme for improving energy efficiency when static power consumption is a significant
component of total power consumption is a technique call “race to halt”. The basic idea is to run
the hardware at maximum speed to quickly compute the necessary set of computations, then turn
off the power, thus preventing leakage.

Suppose you have a CPU that runs your application with an average power consumption of 8 Watts,
where 50% of the power is dynamic and 50% is static. Your application requires an average of 100
Million operations per second but the CPU is capable of 400M ops/sec. Assume that no other
program also running on the CPU.

You would like to determine the most effective way to run your application to preserve the battery
life. You have the ability to control the supply voltage (Vy4), the clock frequency (f), and if needed
can put the CPU into a sleep mode where static power is essentially zero. You consider two schemes.

1. Reduce supply voltage and clock frequency [2 pts].

2. Keep Vy4 and f unchanged, but use the sleep mode [2 pts].

Which approach will be better at conserving your battery charge? Show your work and justify your
answer.

Solution:

1. When varying frequency f and suppy voltage V4, we assume that the static power usage
remains constant. This is more or less not a lie.

Say that we’ve halved the supply voltage, V,;, = %, and halved the frequency, f' = %
Our new dynamic power usage is

1
Pc;yn = iacvogf/
Vd2d i
2

aC="

1
2
1

3 dyn

So our dynamic power usage is % what it was. Since we know that our average 8W power
draw was comprised of half dynamic power usage, we know that our dynamic power usage

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 12

becomes Péyn = 4/8 = 0.5 watts. The total power draw is now P/, = Pstatic + Péyn =
440.5=4.5W.

However, to determine what will conserve the most battery, we have to determine the
energy usage for our application. Energy is the product of power and time; since we have
halved the frequency we can expect that the computation will take twice as long. Now,

E' = Pt
= 4.5(2t)
— ot

Our original circuit took E = 8t, leaving ¢ as an unknown parameter. Thus, modifying
Vaq and f in this manner has increased the total energy usage of the circuit.

2. Since our CPU has the capacity, suppose we do 4x as many operations per second and
so sleep three-quarters of the time. Our activity factor a has quadrupled so the new
dynamic power usage is:

1
Pc/lyn = 5(4a)cvd2df
= 4den
= 16W

Since we can sleep the circuit % of the time, the static power consumption and dynamic
power consumption become 0 when the circuit is not running. Out new total energy
usage is:

t
El = (Pgllyn + Pstatic)z
=5t

This scheme greatly reduces the overall energy usage of our application.

Problem 10: Memory [9 pts]

(a) Suppose you want to design a 1-Byte wide memory block with a capacity of 2K Bytes of
storage (remember 1K = 1024). We would like to have the core of the block square (equal
number of rows and columns). How many total address bits are needed for this memory?
How many address bits are used by the row-decoder? How many address bits are used by the
column-decoder?

(b) Now you want to design the row decoder using the predecoder technique presented in lecture.
Try two difference approaches. The first approach can use only gates with no more than
2-inputs. The second scheme can use some gates with 4-inputs.

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 13

Map out each scheme and describe the design of each of these decoders.

1. Our memory needs to have 2048 = 2 x 1024 = 2 x 210 = 211 bytes of memory. Each byte
is 22 bits. Thus in total our memory must have 21 x 23 = 214 bits of memory.

To arrange as a square, note that the square root v/214 = 27. Thus we need 27 columns
and 27 rows.

Since we address bytes, there are only log, 2! = 11 address bits. Rows use log, 27 =
7 address bits, and this is how many the row decoder uses. Columns only need the
remaining 4 bits, since the memory is arranged in groups of bytes (which are 8 bits
each).

2. Consider a row address denoted by agasasasasaiag, where each a; denotes the i-th address
bit. As described in the lecture slides, predecoding is the process of grouping address
bits and enumerating single signals for each of their possible combinations.

Assuming we use only 2-input gates, we would group the address bits as
(asas)(asas)(azar)ag

We would then generate signals for every combination of inputs in the first, second and
third groups. As we combine the signals again, we have to use additional 2-input AND
gates to combine every possible combination of signals from, for example, the first and
second group:

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 14

as as
as as
dg dg
as as
az a
a a
do do

Aeds
Aeds
335
3635

u .

a4a3
dsa3
.33

sws I

36353433
Q6252433
Q6352433

But we have to repeat this for the other groups too, making it rather unweildy.

Assuming we use some 4-input gates, we can group the address bits as

(asasaqsaz)(azar)ag

This greatly simplifies our combinations. There will be 2* = 16 gates for the first group
and 4 for the second. Then, if we combine the three groups with 2-input AND gates, there
will be 16 x 4 = 48 between the first group and second group, and another 2 x 48 = 96
between each of those and the 2 possible values of ag.

What if we combined them with 4-input gates, tying one input HIGH and pretending
it was 3-input gate? But then we would need 16 x 4 x 2 = 96 gates to complete the
connection. But is this such a good idea?

We could use 4-input AND gates for the second group too, grouping bits as (agasasas)(azaia
This would require 16 and 8 gates for each group respectively, and 128 AND gates to
connect them.

Which of these is best depends on the size and delay of our gates themselves, our budget
for area, power, and so on.

Problem 11: SRAM Waveform [5 pts]

Imagine you are designing the controller for an SRAM block. Draw the waveforms indicating the
sequence of operations for a READ. The sequence begins when the address is registered on the

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 15

positive-edge of the clock. Draw the approximate waveforms for all the signals.

1. CLK

2. ADDR (address)

3. WL (word line)

4. PC (precharge)

5. SE (sense amp enable)
6. D (data out)

Not much detail is specified about the controller. What’s important here is the relative timing
of the various signals:

CLK ‘

ADDR

P |]

WL

SE

In order:
1. The read address is presented before and then registered (not shown) on the rising edge
of the clock, starting the process.
2. Bit lines are precharged, so PC is driven high for a period of time.

3. Bit lines are turned off and the word line WL is driven high, connecting the value stored
in the cell.

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7 16

4. At the same time or a little after, the sense amps SE are enabled.

5. A short time after that, the value in the cell is propagated to the output, D.

Problem 12: SRAM vs. DRAM [4 pts]

For each of the following attributes, compare SRAM to DRAM and explain your reasoning.

(a) density (bits stored per unit area)
(

b

access time

(¢) noise resilience

)
)
)
(d) cost per bit

Solution:

1. DRAM is higher density than SRAM. SRAM takes 6 transistors, DRAM takes 1 transistor
and a capacitive element, or 3 transistors in some designs.

2. DRAM is much slower than SRAM. Reading from DRAM requires several more steps
and can take on the order of 100 cycles in modern systems.

3. SRAM is more resilient to noise than DRAM. Due to its densities, DRAM typically stores
values as very small charges, relative to which any environmental noise is likely more sig-
nificant than in an SRAM. SRAM stores values in a bistable cross-coupled inverter, which
would take significant noise (more than half the high-low logic voltage level difference)
to swing.

4. DRAM is much cheaper per bit (now) simply because its densities are much greater.
Consider how much SRAM is typically found on a CPU (now on the order of 10 MB)
compared to the amount of memory in a typical system (about 16 GB).

Problem 13: DRAM [4 pts]

1-transistor DRAM designs usually include a “row buffer”—a register on the periphery that is used
to register an entire row. Explain how this register could be used and why it’s a good idea.

e It reduces power and increasing memory system speed. RAM accesses exhibit spacial
locality to a high degree: it’s likely that access to one word in a DRAM row is likely
followed by another access to the same row. Buffering the row saves having to read the
memory cells again, returning a value to the system faster and using less power.

o For writing: a row is opened (copied into the row buffer) and constituent bytes/words

Version: 1 - 2019-04-10 19:32:31-07:00

EECS 151/251A Homework 7

17

‘ are updated before the entire buffer is written back.

Version: 1 - 2019-04-10 19:32:31-07:00

	Fast Unsigned Integer Comparison [15 pts]
	Extending RISC-V [8 pts]
	3 Stage RISC-V Pipeline Branching [8 pts]
	3 Stage RISC-V Pipeline [8 pts]
	3 Stage RISC-V Pipeline with Synchronous Memory [6 pts]
	3 Stage RISC-V Pipeline Bypassing [5 pts]
	Line Drawing Accelerator [20 pts]
	Energy Efficiency Improvements [10 pts]
	Race to Halt [4 pts]
	Memory [9 pts]
	SRAM Waveform [5 pts]
	SRAM vs. DRAM [4 pts]
	DRAM [4 pts]

