
EECS 151/251A Homework 5

Instructor: Prof. John Wawrzynek, TAs: Christopher Yarp, Arya Reais-Parsi

Due Monday, Mar 4th, 2019

Problem 1: Identifying Functions [3 + 3pts]

The circuit shown below implements a common familiar function.

a

b

a

c

(a) What is the function? Describe the use of a, b, and c. [3 pts]

(b) Why does this implementation provide some advantage over the more common implementa-
tion of the same function? [3 pts]

Solution:
(a) This is a non-inverting tri-state buffer. Looking at the truth table,

a b c
0 0 Z
0 1 0
1 0 Z
1 1 1

b acts as an “enable” signal and a as the buffered signal. Whenever b is HIGH, the output
is enabled and takes the value of a. The central PMOS/NMOS pair are both ON in order

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 2

to connect the output transistors’ gates together, so that they take the same value. When
b is LOW, the central PMOS/NMOS pair are both off. The pull-up transistors then pull
the output PMOS gate up, disabling it, and the pull-down transistors pull the output
NMOS gate down, also disabling it. Then c floats with only high-impedance paths to
GND and VDD.

(b) The “traditional” tri-state buffer places four transistors in series.

en

en

outin

To drive large outputs, each of these transistors has to be made wider. The design we
have considered only requires us to widen two transistors at the output in order to drive
the large load, not four, saving area. (For a given area, this design is faster.)

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 3

Problem 2: 251A only — Optional Challenge Question for 151 [5 +
2 pts]

The circuit below is an incomplete design of a complementary static CMOS logic gate.

a b

d e

c

PDN?

f

(a) Complete the circuit design by drawing the pull-down network. [5 pts]

(b) What is the Boolean function this gate implements? [2 pts]

Solution:
(a) The PDN is:

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 4

d a

be

c

f

The simplest way to derive the PDN from the PUN is to find the Euler path (which is
similar to finding the dual of a graph representing either network, but with the outer
space split into two), as below. For more information see Rabaey, Chandrakasan, Nikolic
Digital Integrated Circuits, A Design Perspective, Second Edition, Design Methodology
Insert D.

f GND

d a

be

c

V
CC

f

(b) From the PUN, read off the paths that result in f HIGH. Since the inputs to the PMOS
transistors need to be LOW to turn them on, we treat the inputs as inverted:

f = a d + b e + a c e + b c d

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 5

From the PDN:

f = de + ab + ace + dce

f = de + ab + ace + dce

= de ab ace dce

= (d + e )(a + b )(a + c + e )(d + c + e )
= . . . (expand and simplify). . .
= a d + b e + a c e + b c d

Problem 3: Transistor Level Implementation of Logic Gate [4 pts]

Exclusive-nor (XNOR) is defined as the complement of exclusive-or. Draw a complementary static
CMOS gate that implements XNOR(a,b) with the minimum number of transistors. You may
assume that both inputs a and b are available in uncomplemented and complemented forms.

Solution:
The truth table for exclusive-NOR is:

a b f
0 0 1
0 1 0
1 0 0
1 1 1

From which we derive that the boolean function is f = ab+a b . Assuming that inverted inputs
are available (if they aren’t we can use a simple inverter to acquire them), an implementation
is:

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 6

f

a

a

a

a

bb

b

b

Problem 4: Transistor Level Implementation of Logic Function [6
pts]

Assuming the inputs are available in uncomplemented and complemented forms, draw a comple-
mentary static CMOS gate that implements the majority function of three inputs a, b, and c, using
the minimum number of transistors.

Solution:
The majority function outputs one whenever the majority of inputs are 1. For three inputs a,
b and c its truth table is:

a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

It’s straightforward to write the boolean expression you’d expect: f = ab + bc + ac. From this

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 7

we can derive an expression for the or the PUN. For the PDN in this case, it’s:

f = ab + bc + ac

= ab bc ac

= (a + b )(b + c )(a + c )

Which yields:

f

a

c

b

b

c a

a

b c

b

c

a

Note that at this point there is symmetry in how you could implement the PDN. An alternative
solution is:

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 8

f

a

b c

b

c

a

a

c

b

b

c a

To reduce the number of gates used, factor out of one the terms in the first expression f =
ab + bc + ac = ab + c(b + a). This makes it easy to deduce the PUN. Deriving the PDN from
scratch is a little more work:

f = (a + b )(b + c )(a + c )
= (a + b )(b a + b c + c a + c )
= (a + b )(b a + c (b + a + 1)
= (a + b )(b a + c (1))
= (a + b )(b a + c )

Either way, this removes a transistor from each of the PDN and PUN:

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 9

f

a

c

b

b

a

a

b

b

c

a

Problem 5: Transistor Level Implementation of Logic Function [4
pts]

Assuming that only uncomplemented inputs are available, draw a complementary static CMOS
gate that implements F = (a + b)′ + (c + d)′, using the minimum number of transistors.

Solution:

F = a + b + c + d

F = (a + b)(c + d)

gives us the PDN. We can derive the PUN by identifying the Euler paths or, in this simple
case, by converting parallel gates to series ones. The static CMOS gate is thus:

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 10

a

c d

b

a

b

c

d

F

Problem 6: Transistor Level Implementation of Logic Function [5
pts]

Assuming that only uncomplemented inputs are available, draw a complementary static CMOS
gate that implements F = a′b′d′ + a′b′e′ + a′c′f ′ + a′c′g′, using the minimum number of transistors.

Solution:
Develop the pull-up network by factoring the boolean expression for F :

F = a b d + a b e + a c f + a c + g

= a (b d + b e + c f + c g )
= a (b (d + e ) + c (f + g ))

With complementary PDN, the circuit is:

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 11

c

a

b

f

g

e

d

F

cb

d e f g

a

Problem 7: Pass-Transistor Implementation of Flip-Flop with CE
[4 pts]

Draw the CMOS positive-edge triggered Flip-flop implementation shown in class (lecture 9) as we
did using inverters and transmission gates. Show how you would modify it to include the clock
enable (CE) input. You may use additional transistors and gates as needed.

Solution:
Use the clock-enable signal to gate the input to the first latch. If CE is LOW, the input from
the flip-flop output is fed back into the input. This method prevents an unintended state
change if CE goes HIGH midway through CLK being HIGH.

CLK CLK

CLK CLK

CLK CLKCLK CLK

0

1

CE

in

out

An alternative solution is to gate CLK with CE, generating LCLK and LCLK to use in place of

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 12

CLK throughout the rest of the flip-flop. However, in order to prevent spurious state changes,
CE must first be latched:

CLK

CLK

CE

LCLK

LCLK

CLK

CLK

CLK

latched CE

Problem 8: Pass-Transistor Implementation of Flip-Flop with rst
[4 pts]

Draw the CMOS positive-edge triggered Flip-flop implementation shown in class (lecture 9) as we
did using inverters and transmission gates. Show how you would modify it to include the reset (rst)
input. You may use additional transistors and gates as needed.

Solution:
The reset signal, RST, inserts into the first of the two latch stages to force the value between
the latches to 0, irrespective of the input:

RSTCLK CLK

CLK CLK

CLK CLKCLK CLK

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 13

An alternative solution is to use the input multiplexor shown in the solution problem 7, but
with RST used as the select input and the RST = 1 input tied to 0.

Problem 9: 251A only — Optional Challenge Question for 151 [6
pts]

Shown below is a pass-transistor-logic version of a XNOR gate (note this is not a complementary
static CMOS gate). Make sure you understand the operation of this gate, then use the concepts in
the XNOR gate to design a pass-transistor version of an AND gate implementing AND(A, B).

B’

A

B

out

Solution:
The f = AND(a, b) function can be considered the gating of one signal by the other. Use
a transmission gate that’s ON only when a = 1, and a second NMOS transistor to pull the
output LOW the transmission gate is OFF:

f

a
a

a

c

An alternative way to construct this is as a 2-1 multiplexor with one input constant and the
other c, where a becomes the selection signal (or vice versa).

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 14

Problem 10: Transistor Level Implementation of Shifter [10 pts]

Using only transistors, show how you would implement a combinational logic circuit for a variable
left-shifter as shown below. X is a 4-bit input, Y is a 4-bit output, and S is a 2-bit control signal
that indicates a shift amount of 0, 1, 2, 3 bit positions. Design your circuit to minimize the delay
X to Y.

X Y

S

Variable

Amount

Left-Shifter

2

44

Solution:
The suboptimal solution is to use two layers of 2-to-1 muxes, each for one of the selection bits
s1 and s0:

01 01 01 01

10 10 10 10

s1

s0

x0x1x2x3

y0y1y2y3

00x1 x0

0

However, this places two transmission gates between the inputs and the outputs, adding un-
necessary delay.

The better (faster) solution is to build a 4-to-1 multiplexor for each signal directly, using pass
gates to minimise delay as shown in lectures. In this solution there is only 1 transmission gate
between each input and the output:

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 15

x3

x2

x1

x0

s1
s0

y3

y2

y1

y0

The CMOS inverter and NAND gates shown are the familiar ones:

Version: 4 - 2019-03-05 16:30:38-08:00



EECS 151/251A Homework 5 16

outin

outin

a

a

b

b

(Note that this solution also leaves room to optimise away gates where we have fixed 0-inputs.)

Version: 4 - 2019-03-05 16:30:38-08:00


	Identifying Functions [3 + 3pts]
	251A only — Optional Challenge Question for 151 [5 + 2 pts]
	Transistor Level Implementation of Logic Gate [4 pts]
	Transistor Level Implementation of Logic Function [6 pts]
	Transistor Level Implementation of Logic Function [4 pts]
	Transistor Level Implementation of Logic Function [5 pts]
	Pass-Transistor Implementation of Flip-Flop with CE [4 pts]
	Pass-Transistor Implementation of Flip-Flop with rst [4 pts]
	251A only — Optional Challenge Question for 151 [6 pts]
	Transistor Level Implementation of Shifter [10 pts]

