
EECS 151/251A Homework 4

Due Monday, Feb 25th, 2019

Problem 1: Correct JohnW’s lecture mistake! [5 pts]

For the “BCD Incrementer Example” presented in lecture 6, derive the minimized logic equations
for the outputs, expressed in sum-of-products (SOP) form.

Solution:
From the truth tables for w, x, y and z:

x

1

0 x0

x

0

00

x

0

x

0

1

x

0

ab

cd

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0

w

x

0

1 x0

x

1

10

x

0

x

0

0

x

1

ab

cd

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0

x

x

0

1 x1

x

1

00

x

0

x

1

0

x

0

ab

cd

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0

y

x

1

0 x0

x

1

11

x

0

x

1

0

x

0

ab

cd

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0

z

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 2

w = bcd + ad

x = bc + bd + b cd

y = a c d + cd

z = d

Problem 2: Bubble Pushing [14 pts]

Two-level OR/AND circuits can be implemented as two-level NOR/NOR circuits.

(a) For the example below, using the "bubble pushing" technique, show the series of steps that
you would take to convert the circuit to use only NORs. [4pts]

a

b

c

d

(b) Now convert the OR/AND circuit to use only NANDs (and possibly inverters). [5pts]

(c) Convert the following circuit to all NANDs (and possibly inverters). [5pts]

a

b

c

d

Solution:
(a) :

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 3

1

2

3

4

(b) :

1

2

3

4

(c) :

c

a

b

d

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 4

Problem 3: SOP, POS, and Minimum Expressions [9pts]

Consider the function f defined with the truth-table below:

x0 x1 x2 x3 f

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

(a) Write out the sum-of-products (SOP) and product-of-sums (POS) canonical forms. [3pts]

(b) Derive the minimized expressions for f and for f’ in SOP and POS forms (four answers required
here). Hint: use a K-map. [6pts]

Solution:
(a) Sum-of-products (SOP):

f = x0 x1 x2 x3 + x0 x1 x2x3 + x0x1 x2 x3 + x0x1 x2x3+
x0x1x2 x3 + x0x1x2 x3 + x0x1x2x3 + x0x1x2x3

Product-of-sums (POS):

f = (x0 + x1 + x2 + x3)(x0 + x1 + x2 + x3)(x0 + x1 + x2 + x3)(x0 + x1 + x2 + x3 )
(x0 + x1 + x2 + x3)(x0 + x1 + x2 + x3 )(x0 + x1 + x2 + x3)(x0 + x1 + x2 + x3)

(b) Build a Karnaugh map for f and f :

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 5

1

0

0 11

1

0

00

0

1

1

0

0

1

1

x
0

x
1

x
2

x
3

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0

0

1

1 00

0

1

11

1

0

0

1

1

0

0

x
0

x
1

x
2

x
3

0 0

0 1

1 1

1 0

0 0 0 1 1 1 1 0

f f

From the map for f we can derive:

f = x0x1 + x1 x3 (SOP, solid line)
f = (x0 + x1 )(x1 + x3) (POS, dotted line)

And from the map for f we can derive:

f = x1 x3 + x0 x1 (SOP, solid line)
f = (x0 + x1 )(x1 + x3 ) (POS, dotted line)

Notice that the SOP form for f and the POS form for f are equivalent under De Morgan’s
law - likewise the POS form for f and the SOP form for f .

Problem 4: Simplification with Boolean Algebra [6pts]

For the following function g defined with the truth-table below, use algebraic manipulation to derive
its minimized form.

x0 x1 x2 g

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 6

Solution:
The algebraic derivation starts by reading the SOP form from the truth table and then proceeds
as follows:

g = x0 x1 x2 + x0 x1x2 + x0x1x2

= x0 x1x2 + x0 x1 x2 + x0 x1x2 + x0x2x2

= x0 x2 (x1 + x1 ) + x1x2 (x0 + x0 )
= x0 x2 (1) + x1x2 (1)
= x0 x2 + x1x2

We can confirm this by looking at the Karnaugh-map:

0 0

01

0 0

1 1

x0x1

x2

0

1

0 0 0 1 1 1 1 0

g

. . . from which the simplified expression is also:

g = x0 x2 + x1x2

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 7

Problem 5: Building a Better Saturating Incrementer [10pts]

Consider the design of a 3-bit binary unsigned incrementer with saturating output. Saturating in
this case means that if the input is the maximum representable value (in this case 1112), then it is
passed through unchanged. In Verilog we might try defining the incrementer with:

assign y = (x == 3'b111) ? 3'b111 : x + 1;

A naive logic synthesizer might turn this into a comparitor, a multiplexor, and an adder. Your job
is to derive a simpler circuit by hand.

Show your derivation of logic equations for the 3-output bits, y[0], y[1], y[2].

Solution:
First derive an expression for g as a function of the current value x:

x2 x1 x0 y2 y1 y0
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 1 1 1

Then derive simplified expressions for each signal in y using a Karnaugh-map (or otherwise):

y2:

0 1

11

1 1

0 0

x2x1

x0

0

1

0 0 0 1 1 1 1 0

y2

y2 = x0x1 + x2

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 8

y1:

1 1

01

0 1

0 1

x2x1

x0

0

1

0 0 0 1 1 1 1 0

y1

y1 = x0 x1 + x2x1 + x0x1

y0:

0 0

11

0 1

1 1

x2x1

x0

0

1

0 0 0 1 1 1 1 0

y0

y0 = x0 + x2x1

Problem 6: Writing a FSM in Verilog [8pts]

Write the behavior Verilog description for the Combinational Lock FSM example presented in
lecture 7.

Solution:
module CombinationalLock(clk, reset, code, enter, open, error);

input clk, reset;
input [7:0] code; // Assume code is 8 bits.
input enter;

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 9

output open, error;

parameter START = 3'd0;
parameter OK1 = 3'd1;
parameter OK2 = 3'd2;
parameter BAD1 = 3'd3;
parameter BAD2 = 3'd4;

// Let's pretend that the code is '12'.
parameter CODE1 = 8'd1;
parameter CODE2 = 8'd2;

reg open;
reg error;
reg [2:0] present_state, next_state;

always @(posedge clk)
if (reset) present_state <= START;
else present_state <= next_state;

always @(present_state or enter)
case (present_state)

START: begin
open = 1'b0;
error = 1'b0;
if (enter == 1'b0) next_state = START;
else if (code == CODE1) next_state = OK1;
else next_state = BAD1;

end
OK1: begin

open = 1'b0;
error = 1'b0;
if (enter == 1'b0) next_state = OK1;
else if (code == CODE2) next_state = OK2;
else next_state = BAD2;

end
OK2: begin

open = 1'b1;
error = 1'b0;
next_state = START;

end
BAD1: begin

open = 1'b0;
error = 1'b0;
if (enter == 1'b1) next_state = BAD2;
else next_state = BAD1;

end

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 10

BAD2: begin
open = 1'b0;
error = 1'b1;
next_state = BAD2;

end
default: begin

open = 1'b0;
error = 1'b0;
next_state = START;

end
endcase

endmodule

Problem 7: Designing an FSM [11pts]

Consider the design of a Moore-style FSM with a 1-bit input (x), and a 1-bit output (y). The FSM
accepts inputs one bit at a time and outputs a 0 until it sees the sequence 0101 (with no other bit
values in between). After seeing the second 1 in the sequence it outputs a 1 and then starts over.

(a) Draw the state transition diagram. Label all nodes and arcs. [3pts]

(b) Derive the next state logic and the output logic equations. [8pts]

Solution:
(a) :

WAITING
y = 0

FIRST
y = 0

SECOND
y = 0

THIRD
y = 0

FOURTH
y = 1

x = 1

x = 0

x = 0 x = 1

x = 1

x = 0

x = 1

x = 0

x = 1
x = 0

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 11

(b) One way is to use one-hot encoding and 5 bits to express states:

SW AIT ING = 00001
SF IRST = 00010

SSECOND = 00100
ST HIRD = 01000

SF OURT H = 10000

Then each of the 5 bits of the next state (n) are derived from the current state c and
input x as follows, also assuming that there is a reset r:

y = c4

n0 = r + c1x + c2x + c3x + c4x + c0

= r + x(c2 + c4 + c0) + x (c1 + c3)
n1 = r c0x

n2 = r c1x

n3 = r c2x

n4 = r c3x

Another way is to express states as integers, S0 through S4, using only 3 bits of state.

S0 = 000
S1 = 001
S2 = 010
S3 = 011
S4 = 100

You can then use Karnaugh-maps to derive simplified expressions for each bit of the next
state n from the current state c and input x in the same way as was done for problem 5.

y = n2n1 n0

n2 = c1c0x

n1 = c1 c0x + c1c0 x

n0 = c0 x + x1 x

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 12

Problem 8: Implementing an FSM [13pts]

Consider the state transition diagram shown below:

S0

0

S1

1

S2

1

S3

0

reset

1

1

0

0

0

1

1

0

(a) Write the Verilog behavior description for the corresponding circuit. [5pts]

(b) Draw the circuit diagram for one-hot encoded implementation. (You may assume that flip-
flops have both "set" and "reset" inputs, but you must label which one you would use for each
flip-flop.) [8pts]

Solution:
(a) module Problem(clk, rst, in, out);

input clk, rst;
input in;
output out;

parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;
parameter S3 = 2'b11;

reg out;
reg [1:0] present_state, next_state;

always @(posedge clk)
if (rst) present_state <= S0;
else present_state <= next_state;

always @(present_state or in)
case (present_state)

S0: begin
out = 1'b0;

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 13

if (in == 1'b1) next_state = S1;
else next_state = S3;

end
S1: begin

out = 1'b1;
if (in == 1'b1) next_state = S3;
else next_state = S2;

end
S2: begin

out = 1'b1;
if (in == 1'b1) next_state = S2;
else next_state = S0;

end
S3: begin

out = 1'b0;
if (in == 1'b1) next_state = S2;
else next_state = S0;

end
// No 'default' case needed.

endcase
endmodule

(b) :

S1

S3

S0

S2

 

SET RST

RSTRST

OUT

IN

IN

Problem 9: Converting from Mealy to Moore Style [6pts]

Convert the Mealy-style state transition diagram to a Moore-style.

Version: 4 - 2019-03-14 14:10:34-07:00



EECS 151/251A Homework 4 14

S0

S1

S2
1/1

1/0

1/0

0/0

0/1

0/0

Solution:

S0

0

S0

1

S1

0

S2

1

1

1

1

1

0
0

0
0

Version: 4 - 2019-03-14 14:10:34-07:00


	Correct JohnW's lecture mistake! [5 pts]
	Bubble Pushing [14 pts]
	SOP, POS, and Minimum Expressions [9pts]
	Simplification with Boolean Algebra [6pts]
	Building a Better Saturating Incrementer [10pts]
	Writing a FSM in Verilog [8pts]
	Designing an FSM [11pts]
	Implementing an FSM [13pts]
	Converting from Mealy to Moore Style [6pts]

