
EECS 151/251A Homework 3

Due Monday, Feb 18th, 2019

Problem 1: LUT Implementation [12+3 pts]

Consider the design of a 3-input FPGA lookup table (LUT). An abstracted view of the 3-LUT is
shown below. The ports, a, b, c, and y, are the data inputs and output, respectively. The input
CIN stands for “configuration input”, and CCLK stands for “configuration clock”. The configuration
clock is used at FPGA initialization time to shift in the LUT contents, one bit per clock cycle, over
the CIN port.

CIN CCLK

a

b y3-LUT

c

(a) Draw a circuit diagram for the internal implementation of the 3-LUT, including configuration
loading. Use only the following circuit components: Inverter, 2-input and, 2-input or, Flip-
flop. Remember to label all inputs and outputs.

(b) Imagine now that the 3-LUT is programmed to implement the following function: ~a & b & c.
Label the appropriate nodes in your circuit diagram with the correct configuration values.

Solution:
(a) One way is to use combinational logic to gate the output of each of a series of registers

with the input values (which act as an index):

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 2

Another way is to use multiplexors:

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 3

Where each multiplexor is implemented logically as follows:

(b) Configuration shown in registers.

Problem 2: The “Uber” Flip-Flop [8 pts]

Write a Verilog module which implements a d-Flip-Flop with clock enable, synchronous reset,
synchronous set, asynchronous preset, and asynchronous clear. Give priority to reset & clear. Give
asynchronous priority over synchronous.

Synchronous Inputs:

• reset: q=0

• set: q=1

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 4

Asynchronous Inputs:

• preset: q=1

• clear: q=0

Note: The clock enable only effects synchronous inputs.

Solution:
module uber_flop(

input clk,
input d,
input clk_en,
input reset,
input set,
input preset,
input clear,
output reg q);

always @(posedge preset or posedge clear or posedge clk) begin
//async priority over sync
if(clear) begin

q <= 0;
end else if(preset) begin

q <= 1;
end else begin

//Sync
if(clk_en) begin

//Clk enabled
if(reset) begin

q <= 0;
end else if(set) begin

q <= 1;
end else begin

q <= d;
end

end
end

end
endmodule

Problem 3: Verilog Circuit Implementation [5 pts]

Write a Verilog description of the circuit shown below.

Note: A small circle drawn at an input port indicates that the input signal is inverted before passing
to the gate.

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 5

FF

FF

FF

RESET IN

OUT

Solution:
module problem3(

input IN,
input RESET,
input clk,
output OUT);

reg r0;
reg r1;
reg r2;

always @(posedge clk) begin
r0 <= (~IN)|RESET;
r1 <= IN&r0&(~RESET);
r2 <= IN&(r1|r2)&(~RESET);

end

assign OUT = r2;

endmodule

Since this is a finite state machine like you’ve now seen (or will soon see) in class, the preferred
design pattern is to actually seperate the combinational logic in each state from the state
transition itself (on a clock edge), as below:

module problem3(
input IN,
input RESET,
input clk,

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 6

output OUT);

reg r0, nr0;
reg r1, nr1;
reg r2, nr2;

always @(*) begin
nr0 = (~IN)|RESET;
nr1 = IN&r0&(~RESET);
nr2 = IN&(r1|r2)&(~RESET);

end

always @(posedge clk) begin
r0 <= nr0;
r1 <= nr1;
r2 <= nr2;

end

assign OUT = r2;

endmodule

Problem 4: Clocked Circuits [3+3 pts]

In this problem, you will design a simple synchronous circuit that outputs a pulse of width 2 clock
cycles on each rising edge of the input signal. An example input and output signal is shown below.
To make things easier, we will split the design into two parts. The “Rising-edge Detector” outputs
a pulse in response to a rising edge on the input, as shown below. The “Pulse Widener” stretches
out the pulse for 2 cycles.

CLK

IN

P

OUT

Rising-edge
Detector

PIN OUTPulse
Widener

(a) Draw your circuit for the Rising-edge Detector. Use only the following circuit components:
Inverter, 2-input and-gate, 2-input or-gate, flip-flop. Simpler designs are worth more points.

(b) Draw your circuit for the Pulse Widener.

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 7

Solution:
(a) Rising Edge Detector:

Note that edge detection occurs immediately when the input changes (it is not delayed
by a cycle). Assumption: In remains high for at least 1 positive edge of CLK.

(b) Pulse Widener:

Note that the timing diagram shows that the pulse is seen immediately when P rises . It
is high on the immediate edge. Assumption: P remains high for at least 1 positive edge
of CLK.

Problem 5: Register Transfers [6 pts]

Given the datapath below, what is the minimum number of clock cycles needed to exchange the
top-left-most register value with the bottom-left-most register value?

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 8

REG

REG

REG

1

0

1

0

REG

REG

REG

1

0

CE

CE

CE

CE

CE

CE

Solution:
It would take 3 cycles to swap the values in the bottom-left and top-left registers. For example,
on cycle:

1. move values in bottom-left and top-left registers into registers in the middle of the dia-
gram;

2. load temporary value from top-left into bottom-left;

3. load temporary value from bottom-left into top-left.

(But the operations on cycles 2 and 3 could be swapped.)

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 9

Problem 6: FPGA Mapping [4 pts]

Using only 4-input lookup tables (LUTs), partition the circuit shown below into as few LUTs as
possible. Do not attempt to simplify the gate-level circuit before mapping it to LUTs. Indicate your
answer by drawing boundaries around your partitions.

a b c d

e

f

k

n

p

o

l

m

g

h

i

j

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 10

Solution:
The entire circuit would fit into a single 4-LUT. The inputs would be a, b, c and d. The output
would be p.

Problem 7: 251A only — Optional Challenge Question for 151 [8
pts]

Using only simple logic gates and flip-flops, derive a circuit whose output is a square-wave with 1/8
the frequency of the input clock frequency. Try to use as few flip-flops and gates as possible.

Hint: Start out by first designing a circuit that outputs a square-wave with 1/2 the clock frequency,
then one with 1/4, etc.

Solution:
One method is to build a clock divider and to then use its output as the clock input to
subsequent stages. The first step is to build a clock divider:

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 11

The output is a square-wave at half the frequency of the input clock signal CLK because state
transitions only occur on its positive edge.

The next step is to chain clock dividers until the desired divider is achieved:

However, it is bad practice in general to use clock signals as data inputs. A more robust solution
is a synchronous circuit. One such solution is based on a counter:

Problem 8: LUT Mapping [10+8 pts]

Imagine you are given a “mystery” FPGA programmed to perform a particular set of functions.
We know the following about the FPGA:

1. The device contains a collection of N-LUTs (the value of N is part of the mystery). The LUTs
are numbered 0, 1, 2, Each LUT in the FPGA has the same number of inputs (same N).

2. Each LUT has an output labeled yi, where i is the LUT number, and inputs labeled xi_j ,
where i is the LUT number and j is the input number.

3. For programming, the LUTs are connected in a shift register. They are programmed with a
configuration bit-stream shifted in from one LUT to the next.

4. LUT 0 is programmed as an inverter, therefore y0 = NOT (x0_0). Futhermore, LUT 0 is the
only LUT programmed as an inverter.

5. We were able to recover a fragment of the bit stream, shown here: 0xE9AC96017F88FF55.

(a) How many LUTs would the above bit stream program?

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 12

(b) For each of the LUTs, draw a circuit using simple logic gates to represent the function it is
programmed to implement. Label all inputs and outputs. Show your work.

Solution:
A LUT configured as inverter for its 0-th input will have to have alternating 0s and 1s in its
table entries. To see why, consider that the other inputs - which effectively form an index into
the table - should not matter. Thus the pattern of flipping the value of the 0-th input must
repeat.

We’re told that there is only one inverter. Looking at the configuration string, we find an
repeated ‘01’ pattern in the last octet: 0x55 = 01010101. We can thus surmise that the first
octet configures the first LUT, that this is LUT-0 so configuration is loaded right to left, and
that each LUT has 8 bits of state. Since there are 8-bits of state, we have N = log2(8) = 3.

(a) There are 64 bits of information in the configuration string. Since each LUT needs 8, the
bit stream programs 64 / 8 = 8 LUTs.

(b) LUT-0; 0x55 = 01010101
An inverter.

LUT-1; 0xFF = 11111111

LUT-2; 0x88 = 10001000

LUT-3; 0x7F = 01111111

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 13

LUT-4; 0x01 = 00000001

x4_2 x4_1 x4_0 y4
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

LUT-5; 0x96 = 10010110

x5_2 x5_1 x5_0 y4
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 14

LUT-6; 0xAC = 10101100

x6_2 x6_1 x6_0 y4
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

LUT-7; 0xE9 = 11101001

x7_2 x7_1 x7_0 y4
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 15

Problem 9: Interpreting Verilog [5 pts]

Neatly sketch the circuit that corresponds to the following Verilog code:

module foo (CE, X, CLK, RST, OUT);
input CE, CLK, X, RST;
output OUT;
reg [3:0] Q1;
reg [3:0] Q2;
assign OUT = ^Q1;
always @ (posedge CLK)

if (RST) begin
Q1 <= 4'h5;
Q2 <= 0;

end
else

if (CE) begin
if (X) Q2 <= Q1<<1;
else Q2 <= Q1;
Q1 <= Q2;

end
endmodule // foo

Solution:

Version: 2 - 2019-02-19 21:47:46+01:00

EECS 151/251A Homework 3 16

Version: 2 - 2019-02-19 21:47:46+01:00

