
EECS 151/251A Homework 9

Instructor: Prof. John Wawrzynek, TAs: Christopher Yarp, Arya Reais-Parsi

Due Monday, May 6th, 2019

Problem 1: Multiplying Signed Numbers by Hand [8 pts]

Using the method shown in class, multiply by hand the following signed 5-bit numbers. Show your
work.

(a) 12× 5

(b) 3×−12

(c) −15×−1

(d) −8× 7

Solution:
1. 1210 = 01100b; 510 = 00101b. 00111100b = 6010.
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sign bit

2. For the negative multiplicand, perform multiplication as normal but subtract the final
partial product (since the sign bit has negative weight).
310 = 00011b; −1210 = 10100b. 11011100b = −3610 (2’s complement).
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add 2's complement
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Another way to do this is to sign extend the multiplier directly, as shown below. The
trick here is to extend it as far as is appropriate. Multiplying two 5-bit signed numbers
will yield a 9-bit signed number. At bit 7 the pattern starts repeating, so higher order
bits have been omitted (which is fine to do since our number fits into fewer bits).
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3. When the multiplicand is negative, we proceed as before, but we sign-extend the multi-
plicand in each partial product:
−1510 = 10001b; −110 = 11111b. 00001111b = 1510.
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sign bit

sign bit

sign extension

11110001
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-10001
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add 2's complement

to perform subtraction

4. −810 = 11000b; 710 = 00111b. 11001000b = −5610. Again the result has been truncated:
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sign bit

sign bit
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 1111111111000

  111111111000

   00000000000

    0000000000
    000000000
      00000000
       0000000
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Problem 2: Analyzing Multiplier Structures [14 pts]

Consider multiplying 7× 5 using the unsigned array multiplier presented in class.

(a) Assume that we use carry-propagate adders, and that the delay of each adder is τF A. How
long does it take to compute the product? What are the intermediate signals in the array
(label these signals in a diagram)? In what order are the product bits ready?

(b) Now, assume that we use a carry-save adder instead. How long would it take to compute the
product? What are the intermediate signals in the array (label these signals in a diagram)?
In what order are the product bits ready?

Next, consider multiplying a −7×−5 using a signed carry-propagate array multiplier.

(c) Assume that the multiplier does not use any of the Baugh-Wooley simplifications. How long
would it take to compute the product? What are the intermediate signals in the array (label
these signals in a diagram)? In what order are the product bits ready?

(d) Now, assume that the multiplier uses the Baugh-Wooley simplifications. How long would it
take to compute the product? What are the intermediate signals in the array (label these
signals in a diagram)? In what order are the product bits ready?

Solution:
1. There are 8 adders in the critical path. Since our analysis is for the sake of cursory

comparison, we assume that the AND gate itself has no delay, half- and full-adders both
have delay τF A, and that the first row of adders (which add 0) is omitted (it is not drawn).
Then the approximate delay is 6τF A. Products bits are ready in the order from least to
most significant bit: z0, z1, z2, · · · , z7.

2. The delay is 6τF A, if we discount the first row (which adds 0 to the first partial product)
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as in the figure we have for the CPA in lecture (above). Using the scheme drawn, the
bits are ready in the same order as with the CPA above.

3. We have to include an additional adder over that shown in (1). The delay is now 9τF A.
Bits are produced in the same order. The diagram of intermediate signals is omitted. A
major disadvantage of this approach is the additional area of the adders needed for the
sign-extended partial products.

4. Based on our extremely simplistic assumptions, the delay with the Baugh-Wooley sim-
plifiations is still 9τF A. At this point, however, the assumptions break down. We have
only added a half -adder, not as full-adder as in (3), so this is necessary less. We also
saved turning one of our existing half-adders into a full-adder. But most importantly, we
saved a large a mount of area by avoiding unnecessary adders.

Problem 3: Booth Recoding [12 pts]

Design a circuit to perform multiplication of two unsigned 4-bit numbers with Booth recoding.

Solution:
This solution describes one possible design and should serve as a guide.

The general structure of the circuit is to first set up the necessary constants, and to then
accumulate partial products in accordance with Booth’s algorithm until done. Note that not
all register enable inputs are shown. The important ones are those needed to alternate between
enabling the setup registers (A, −A, B) and the processing registers (X).
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There are seven parts:

1. The 4-bit multiplicand input, A

2. Circuitry to generate the 2’s complement of A, −A

3. The 4-bit multiplier input, B, with an extra bit in a shift-register configuration

4. Lgic to manage the setup and computation steps within the circuit

5. A bank of 5 full-adders to compute partial products on each non-setup cycle

6. Logic to control the input to the full adders according to Booth’s algorithm, selecting
between adding 0, A, 2A, −A, −2A

7. The output register bank X, also configured as a shift register, to accumulate the partial
products and store the final result

It is assumed that a “start” signal of some kind is given when the input values are provided.
This signal is propagated through shift registers, a one-hot encoding of the state of the circuit.
The 4-bit by 4-bit multiplication should be complete in 5 cycles: when done is true, the result
is the value in X7, · · · , X0.

At the end of every cycle “setup”, the multiplier and the output product are shifted by 2. The
lower three bits of the multiplier (remembering that one 0 is appended to the initial value)
determine the action to be taken to accumulate the partial sum, per Booth’s algorithm. Since
there are five actions we need to generate three control signals, add_0, s1 and s2, as follows:

Bk+1 Bk Bk−1 action add_0 s1 s0
0 0 0 add 0 1 x x
0 0 1 add A 0 0 0
0 1 0 add A 0 0 0
0 1 1 add 2×A 0 0 1
1 0 0 sub 2×A 0 1 1
1 0 1 sub A 0 1 0
1 1 0 sub A 0 1 0
1 1 1 add 0 1 x x

(This table is reproduced from that in Lecture 21.)

We can determine the simplified expressions for the control signals by reading a SoP-form
expression from this table or by creating a Karnaugh map. The control signals can be assigned
arbitrarily, but as written they simplify reasonably well.

Note also that, in order to “add 0”, we simply skip the full-adders entirely. This saves us
having to use 3-to-1 multiplexors on their inputs.
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The output shift register is 2 bits wider than the final product because it must handle all
intermediary sums, which can be up to 6 bits wide (5 bits plus a carry). To save using a
separate cycle to shift these values, the output of the partial sum computation is inserted into
the shifted position at the end of the cycle.
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Problem 4: Constant Multiplication [8 pts]

Derive the minimal canonic signed digit (CSD) multiplier for:

(a) Y = 415 ∗X

(b) Y = 238 ∗X

Show your conversion to CSD form and the resulting multiplier circuit using adders and subtractors.
Assume that X is a 12-bit unsigned integer.
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Solution:
Part a:

415 = 0110011111
Pass 1: 01 . . . 10→ 1̄0 101̄0100001̄
Pass 2: 011̄0→ 0010, 01̄10→ 001̄0 101̄0100001̄

Thus, the CSD form of 415 is 101̄0100001̄.

Checking the solution: 512− 128 + 32− 1 = 415.

415x = (512− 128 + 32− 1)x = 29x− 27x+ 25x− 20x = (x << 9)− (x << 7) + (x << 5)− x

Thus, the CSD implementation of the constant coefficient multiply is:

x
<<9 <<7 <<5

-+
-

- -
+

++ +

y

Part b:

238 = 011101110
Pass 1: 01 . . . 10→ 1̄0 1001̄1001̄0
Pass 2: 011̄0→ 0010, 01̄10→ 001̄0 10001̄001̄0

Thus, the CSD form of 415 is 10001̄001̄0.

Checking the solution: 256− 16− 2 = 238.

238x = (256− 16− 2)x = 28x− 24x− 21x = (x << 8)− (x << 4)− (x << 1)

Thus, the CSD implementation of the constant coefficient multiply is:
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x
<<8 <<4 <<1

-+
-

-+
- y

Problem 5: 251A Only. Constant Multiplication [5 pts]

The CSD representation multiplier circuits presented in lecture are exclusive to unsigned values for
X and C. Explain how the circuits would need to change to accommodate signed two’s-complement
values for X and for C.

Solution:
Supporting signed X: Recall that 2’s complement numbers can be added just like unsigned
numbers. Shifts to the left also accomplish multiplications by powers of 2, just like with
unsigned numbers:

2nαn +−2n−1αn−1 + . . .+ 21α1 + 20α0) · 2 = −2n+1αn +−2nαn−1 + . . .+ 22α1 + 21α0 + 20 · 0

Therefore, no modifications to the adder structure itself are required. However, it is important
to sign extend the shifted values of x before adding.

Supporting signed C: We can exploit the fact that CSD allows digits to have positive, zero,
or negative weight when deriving support negative coefficients.

Negative coefficients can be handled using the following procedure:

1. Determine if C is negative. If it is positive, proceed to derive the CSD representation as
usual. If not, continue to step 2.

2. Get the absolute value of the negative number by taking its 2’s complement (bitwise
negate and add 1).

3. Use the procedure from lecture to attain the CSD representation of the absolute value.

4. Replace all 1’s in the CSD representation with 1̄ and all 1̄’s with 1. This inverts the
weights of the components that, when summed together add up to the absolute value
of the original digit. Using the distributed property, this is equivalent to multiplying
the CSD expression by -1. Since the absolute value is positive, this leads to a CSD
representation of the negative number.
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Note that, since only the non-zero weights were changed, the number of nonzero weights in
the CSD representation remains unchanged between the positive and negative versions of the
number. The only difference between them is that the nonzero weights switch sign.

An example of this process is shown below: CSD of -238:

• -238 is negative, compute CSD of absolute value (238)

• CSD of 238 = 10001̄001̄ = 256− 16− 2

• Swapping 1 for 1̄ and 1̄ for 1: 1̄0001001 = −256 + 16 + 2 = −(256− 16− 2) = −238

Problem 6: Shifter [8 pts]

Using 2-input multiplexers and simple logic gates, if you need them, draw a combinational circuit
that is capable of performing both a left shift or a right arithmetic shift. The circuit takes a 4-bit
data input value, X, a 2-bit control for shift amount, SA, and a control bit LR. If LR=1 the circuit
shifts left, otherwise it shift right.

Solution:
There are multiple possible solutions for implementing this shifter out of 2 MUXs and logic
gates. Two possible solutions are presented here and are based on the Log Shifter design.

The first version, shown below, constructs a left shifter and a right shifter which are then
selected between. The two gray multiplexers can be optimized out.

x0
x1
x2
x3

0

01 01 01 01 01 01 01 01

01 01 01 01

0

SA[1]

01 01 01 01
SA[0]

01 01 01 01
LA

y3 y2 y1 y0

The next version uses 3 MUXs which are constructed out of 2 MUXs. The advantage of this
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version is that fewer multiplexers are used. However, the depth is larger resulting in more
delay.

x0
x1
x2
x3

0

CA B
{LA, SA[1]}

CA B CA B CA B

CA B CA B CA B CA B

0

{LA, SA[0]}
y3 y2 y1 y0

CA B

01

01SA[]

{LA, SA[]}

LA

A C B

Problem 7: FSM Design with Counters [15 pts]

Suppose you wish to design the controller for a packet processor in the interface to a wireless
network. A message packet comes into your circuitry bit serially, from left to right as defined by
the following packet format:

preamble (128-bits) header (32 bits) body (1024 bit)

The job of your controller is to split off the three fields of the incoming packets, feeding them each
into external (to your controller) shift registers to hold each one. The three external shift registers
each have a SE (shift enable) input. These shift enable inputs are named PRE_se, HDR_se, and
BDY_se, for preamble, header, and body, respectively.

Your block has these inputs: Din, DV (data valid from the wireless interface, asserted on a per clock
cycle basis), and RST.

After reset DV will be asserted on each cycle where Din holds a valid input. The bits of the packet
are passed in serially starting with the preamble. Outputs from your block should be the three
enable signals.

Design this controller using a FSM and counter(s). You don’t need to show the detailed design of
the counters, but show the details of the FSM circuitry. To keep the FSM implementation simple,
you might want to consider using a one-hot encoded state machine.

Solution:
For this problem, we will assume all shift register inputs are wired to Din. We will also use a
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single 10 bit counter that has outputs when the count reaches 31, 127, and 1023. Since these
are all powers of 2 minus 1, this can be accomplished using a parallel prefix AND tree. These
outputs of the counter will be referred to as count31, count127, and count1023 respectively.
This counter has an enable signal count_en that causes the counter to increment on the next
positive edge of the clock. It also has a synchronous reset signal count_rst that resets the
counter back to 0 on the next positive edge of the clock.

The State Transition Diagram of the FSM is shown below. All outputs are 0 except when
listed. When listed, the outputs have a value of 1.

preamble header body
(DV&&count127)

{count_rst,
PRE_se}

(DV&&count31)
{count_rst,
HDR_se}

(DV)
{}

(DV)
{}

(DV)
{}

(DV&&count127)
{count_en,
PRE_se}

(DV&&count31)
{count_en,
HDR_se}

(DV&&count1023)
{count_en,
BDY_se}

(){count_rst}

()
{count_rst}

()
{count_rst}

()
{count_rst}

(DV&&count1023)
{count_rst,
BDY_se}

A one hot implementation of this FSM is shown below. Some of the gates can be merged
together (gates shaded in the same color) but are shown separately for clarity.
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Problem 8: Counter Design [15 pts]

(a) Write a Verilog generator that builds an AND-reduction parallel prefix tree for N inputs, where
N is always a power of 2. Note that there are many possible structures for parallel prefix.
However, for this problem, please implement the the “alternative parallel prefix circuit” shown
in the lecture notes under synchronous counters, and also sometimes referred to as “Kogge-
Stone” and shown in the lecture on fast adder circuits.

(b) Using that module write the a Verilog generator to define an N-bit binary counter, inputs are
CE, CLK, and outputs are Q[N-1:0], and TC.

Here are some hints on writing the generator: The compile time function, $clog2 is used to take
the log of a parameter. For instance localparam levels = $clog2(N); Also, the Verilog compile
time operator “**”, as in a**b, is equivalent to pow(a, b) in the C language.

Solution:
Parallel Prefix

module PrefixAnd #(parameter N=16) //Assuming N is a power of 2
( input [N-1:0] In,
output [N-1:0] Out);
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localparam levels = $clog2(N);
//$clog2 is function that was introduced in Verilog-2005 and may not be
//supported by all EDA tools.
//See https://www.xilinx.com/support/answers/44586.html for a workaround

wire [N-1:0] array [levels:0]; //Need an extra entry to hold the

assign array[0] = In;

genvar i;
genvar j;

generate
for(i = 1; i<=levels; i = i+1) begin:rows

//Pass complete columns
//Note: a**b is pow(a, b) in C
for(j = 0; j<2**(i-1); j = j+1) begin:pass_cols

assign array[i][j] = array[i-1][j];
end

//And remaining columns
for(j = 2**(i-1); j<N; j = j+1) begin:calc_cols

assign array[i][j] = array[i-1][j] & array[i-1][j-(2**(i-1))];
end

end
endgenerate

assign Out = array[levels];

endmodule

module Counter #(parameter N=16) //Assuming N is a power of 2
( input clk,

input ce,
output [N-1:0] Q,
output tc);

//See the "Synchronous Counters" slide of
//http://inst.eecs.berkeley.edu/~eecs151/sp19/files/lec23-count-shift.pdf

reg [N-1:0] count = 0;

wire [N:0] ppInput;
assign ppInput = {count, ce};

wire [N:0] ppOutput;
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PrefixAnd #(N+1) prefixAnd (.In(ppInput), .Out(ppOutput));

wire [N-1:0] next_count = count ^ ppOutput[N-1:0];

always @(posedge clk) begin
count <= next_count;

end

assign Q = count;
assign tc = ppOutput[N];

endmodule

Problem 9: LFSR [4 pts]

Draw the circuit for a 16-bit LFSR.

Solution:
To form a 16 bit LFSR, you need to use a primative polynomial of order 16. One such
polynomial was given in lecture: x16 + x12 + x3 + x + 1. This primitive polynomial was used
to create the 16 bit LFSR shown below:

Q1Q2Q3Q4Q5Q6Q7Q8Q9Q10Q11Q12Q13Q14Q15Q16

Problem 10: Modulo Scheduling [12 pts]

The following graph represents one iteration of a repeating computation: yi = (Ai + Bi) ∗ Ci. Ai,
Bi, and Ci are stored in memory and must be read before they can be used. The result, yi, must
also be stored back into memory. The target hardware platforms for this algorithm include registers
that are necessary for pipelining and scheduling. Mem read, write, *, and + each take 1 clock cycle
to complete.
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+

Ai Bi Ci

*
yi

Using modulo scheduling, draw the characteristic section schedule with subscripts for the following
hardware platforms:

(a) 2 read ports, 1 write port, 1 adder, and 1 multiplier

(b) 3 read ports, 1 write port, 1 adder, and 1 multiplier

(c) 2 read ports, 1 write port, 1 adder, and 1 pipelined multiplier (2 cycles per multiply)

(d) 3 read ports, 1 write port, 1 adder, and 1 pipelined multiplier (2 cycles per multiply)

Solution:
a: 2 read ports, 1 write port, 1 adder, and 1 multiplier

RD0 Ai Ci

RD1 Bi

WR0 (Ai−1 +Bi−1)Ci−1
+ Ai +Bi

* (Ai−1 +Bi−1)Ci−1

The characteristic section cannot be reduced further due to a lack of available read ports.

b: 3 read ports, 1 write port, 1 adder, and 1 multiplier

RD0 Ai

RD1 Bi

RD2 Ci

WR0 (Ai−3 +Bi−3)Ci−3
+ Ai−1 +Bi−1
* (Ai−2 +Bi−2)Ci−2

This is perfect pipelining!
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c: 2 read ports, 1 write port, 1 adder, and 1 pipelined multiplier (2 cycles per multiply)

RD0 Ai Ci

RD1 Bi

WR0 (Ai−2 +Bi−2)Ci−2
+ Ai +Bi

* pt 1 (Ai−1 +Bi−1) ∗pt1 Ci−1
* pt 1 (Ai−1 +Bi−1) ∗pt2 Ci−1

The characteristic section cannot be reduced further due to a lack of available read ports.

d: 3 read ports, 1 write port, 1 adder, and 1 pipelined multiplier (2 cycles per multiply)

RD0 Ai

RD1 Bi

RD2 Ci

WR0 (Ai−4 +Bi−4)Ci−4
+ Ai−1 +Bi−1
* pt 1 (Ai−2 +Bi−2) ∗pt1 Ci−2
* pt 2 (Ai−3 +Bi−3) ∗pt2 Ci−3

This is perfect pipelining! Note that this is only possible because the multiplier is pipelined.
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