EECS151/251A Discussion 7

Christopher Yarp
Mar. 8, 2019

Plan for Today

- Deriving Inverter Characteristics
- Practice Problem
- Your Questions

Inverter Characteristics

- For this problem we will assume
- $R_{P}=2 R_{N}$ for equal width transistors
- Let $R_{N 0}$ be the resistance of a unit size N-FET
- $C_{G P}=C_{G N}=C_{G}$ for equal width capacitors
- Let $C_{G 0}$ be the gate capacitance of a unit size FET
- Scaling transistor width by a factor W scales the following parameters
- $R=\frac{R_{\text {orig }}}{W}$

$$
\text { - } C=W C_{\text {orig }}
$$

- We will size the width of the N-FET by W and the width of the P-FET by 2W
- We will characterize the following aspects of the inverter
- Internal Capacitance
- Input Capacitance
- Gate delay as a function of fanout
- The source capacitances are shorted to the voltage ranges and can be ignored

Inverter Parasitics

- An equivalent model can be made by tying all capacitors connected to static voltage rails to ground (see Weste \& Harris pg 144)

Input Capacitance

- Width N-FET = W
- $C_{G N}=W C_{G 0}$
- Width P-FET $=2 \mathrm{~W}$
- $C_{G P}=2 W C_{G 0}$
- $C_{i n}=C_{G P}+C_{G N}=3 W C_{G 0}$
(Parallel Capacitance)

Internal Capacitance

- $C_{D}=\gamma C_{G}$
- Width $\mathrm{N}-\mathrm{FET}=\mathrm{W}$
- $C_{D N}=W \gamma C_{G 0}$
- Width P-FET $=2 \mathrm{~W}$
- $C_{D P}=2 W \gamma C_{G 0}$
- $C_{i n t}=C_{D P}+C_{D N}=3 W \gamma C_{G 0}$ (Parallel Capacitance)

Output Capacitance

- $C_{\text {out }}=C_{i n t}+C_{\text {load }}=$ $3 W \gamma C_{G 0}+C_{\text {load }}$
(Parallel Capacitance)

Discharge Time

- How long does it take to discharge the output to $V_{D D} / 2$?
- This looks like an RC circuit!
- $R_{N}=R_{N 0} / W$
- $C_{\text {out }}=3 W \gamma C_{G 0}+C_{\text {load }}$
- $V=V_{D D} e^{-t /\left(R_{N} C_{o u t}\right)}$
- Solve for t when $V=0.5 V_{D D}$

Discharge Time

- Solve for t when $V=0.5 V_{D D}$
- $0.5 V_{D D}=V_{D D} e^{-t /\left(R_{N} C_{o u t}\right)}$
- $0.5=e^{-t /\left(R_{N} C_{\text {out }}\right)}$
- $\ln (0.5)=-t /\left(R_{N} C_{\text {out }}\right)$
- $t=-\ln (0.5)\left(R_{N} C_{\text {out }}\right)$
- $t=-\ln (0.5)\left(R_{N 0} / W\right)\left(3 W \gamma C_{G 0}+C_{\text {load }}\right)$
- $t=-\ln (0.5)\left(3 R_{N 0} \gamma C_{G 0}\right)\left(1+\frac{C_{\text {load }}}{3 W \gamma C_{G 0}}\right)$
- Recall that $C_{i n}=3 W C_{G 0}$
- $t=-\ln (0.5)\left(3 R_{N 0} \gamma C_{G 0}\right)\left(1+\frac{C_{\text {load }}}{\gamma c_{\text {in }}}\right)$
- Recall fanout: $f=\frac{c_{\text {load }}}{C_{\text {in }}}$
- $t=-\ln (0.5)\left(3 R_{N 0} \gamma C_{G 0}\right)\left(1+\frac{f}{\gamma}\right)$
- $t \approx 0.69\left(3 R_{N 0} \gamma C_{G 0}\right)\left(1+\frac{f}{\gamma}\right)$

Charge Time

- Similar to discharge time
- How long does it take to charge the output to $V_{D D} / 2$?
- This looks like another RC circuit!
- $R_{P 0}=2 R_{N 0}$
- $R_{P}=\frac{R_{P 0}}{2 W}=\frac{2 R_{N 0}}{2 W}=\frac{R_{N 0}}{W}$
- $C_{\text {out }}=3 W \gamma C_{G 0}+C_{\text {load }}$ (same as before)
- $V=V_{D D}\left(1-e^{-t /\left(R_{P} C_{o u t}\right)}\right)$
- Solve for t when $V=0.5 V_{D D}$

Charge Time

- Solve for t when $V=0.5 V_{D D}$
- $0.5 V_{D D}=V_{D D}\left(1-e^{-t /\left(R_{P} C_{o u t}\right)}\right)$
- $0.5=1-e^{-t /\left(R_{P} C_{o u t}\right)}$
- $0.5=e^{-t /\left(R_{P} C_{o u t}\right)}$
- $\ln (0.5)=-t /\left(R_{P} C_{\text {out }}\right)$
- $t=-\ln (0.5)\left(R_{P} C_{\text {out }}\right)$
- $t=-\ln (0.5)\left(R_{N 0} / W\right)\left(3 W \gamma C_{G 0}+C_{\text {load }}\right)$
- Note that this is the same expression we had when calculating discharge time
- $t=-\ln (0.5)\left(3 R_{N 0} \gamma C_{G 0}\right)\left(1+\frac{f}{\gamma}\right)$
- $t \approx 0.69\left(3 R_{N 0} \gamma C_{G 0}\right)\left(1+\frac{f}{\gamma}\right)$

Notes on the Inverter

- The sizing of the P-MOS to be $2 x$ the width of the N-MOS was not an accident!
- It caused the charge time and discharge times to be balanced
- Generally, we try to design gates that exhibit balanced charge and discharge time

More Complex Gates - Tristate Inverter

- Characterize the delays for a tristate inverter from its enable input
- Assume both complemented and uncomplemented inputs are available
- Assume the output has been discharged by another circuit when calculating the charge time
- Assume the output has been charged to $V_{D D}$ when calculating the discharge time
- You can ignore the capacitance at intermediate nodes between transistors in series for this problem ... more on this later

Tristate Inverter Model

Calculating Resistance

- Width N-FET = W
- $R_{N}=\frac{R_{N 0}}{W}$
- Width P-FET = 2W
- $R_{P 0}=2 R_{N 0}$
- $R_{P}=\frac{R_{P 0}}{2 W}=\frac{2 R_{N 0}}{2 W}=\frac{R_{N 0}}{W}$

Calculating Capacitance

- $C_{D}=\gamma C_{G}$
- Width N-FET = W
- $C_{D N}=W \gamma C_{G 0}$
- Width P-FET $=2 \mathrm{~W}$
- $C_{D P}=2 W \gamma C_{G 0}$
- $C_{i n t}=C_{D P}+C_{D N}=3 W \gamma C_{G 0}$
- $C_{\text {out }}=C_{\text {int }}+C_{\text {load }}=3 W \gamma C_{G 0}+C_{\text {load }}$

Ignoring the Intermediate Node Capacitance

- When we have transistors in series, there exists some parasitic capacitance at the intermediate node they share
- This capacitance stops us from using simple first order RC charge/discharge equations because we now need to account for charge that is stored in the intermediate node capacitance
- For small intermediate node capacitance values, ignoring this second order effect will not change the calculated propagation delay by too much*
- For a more accurate first order approximation that does not completely ignore the intermediate node capacitance, see Weste \& Harris pg. 150.

Quick aside to (LT)SPICE!

Discharge Time

- How long does it take to discharge the output to $V_{D D} / 2$?
- This looks like another RC circuit!
- Except, this time, we have series resistance we need to consider
- $R=2 R_{N}=2 R_{N 0} / W$
- $C_{\text {out }}=3 W \gamma C_{G 0}+C_{\text {load }}$
- $V=V_{D D} e^{-t /\left(R C_{o u t}\right)}=V_{D D} e^{-t /\left(2 R_{N} C_{o u t}\right)}$
- Solve for t when $V=0.5 V_{D D}$

Discharge Time

- Solve for t when $V=0.5 V_{D D}$
- $0.5 V_{D D}=V_{D D} e^{-t /\left(2 R_{N} C_{o u t}\right)}$
- $0.5=e^{-t /\left(2 R_{N} C_{\text {out }}\right)}$
- $\ln (0.5)=-t /\left(2 R_{N} C_{\text {out }}\right)$
- $t=-\ln (0.5)\left(2 R_{N} C_{\text {out }}\right)$
- $t=-\ln (0.5)\left(2 R_{N 0} / W\right)\left(3 W \gamma C_{G 0}+C_{\text {load }}\right)$
- $t=-\ln (0.5)\left(6 R_{N 0} \gamma C_{G 0}\right)\left(1+\frac{C_{\text {load }}}{3 W \gamma C_{G 0}}\right)$

Compared to the inverter, this term is $\mathbf{2 x}$ larger

Charge Time

- How long does it take to charge the output to $V_{D D} / 2$?
- This looks like another RC circuit!
- Except, this time, we have series resistance we need to consider
- $R=2 R_{P}=2 R_{N 0} / W$
- $C_{\text {out }}=3 W \gamma C_{G 0}+C_{\text {load }}$
- $V=V_{D D}\left(1-e^{-t /\left(2 R_{P} C_{o u t}\right)}\right)$
- Solve for t when $V=0.5 V_{D D}$

Charge Time

- Solve for t when $V=0.5 V_{D D}$
- $0.5 V_{D D}=V_{D D}\left(1-e^{-t /\left(2 R_{P} C_{o u t}\right)}\right)$
- $0.5=1-e^{-t /\left(2 R_{P} C_{o u t}\right)}$
- $0.5=e^{-t /\left(2 R_{P} C_{o u t}\right)}$
- $\ln (0.5)=-t /\left(2 R_{P} C_{\text {out }}\right)$
- $t=-\ln (0.5)\left(2 R_{P} C_{\text {out }}\right)$
- $t=-\ln (0.5)\left(2 R_{N 0} / W\right)\left(3 W \gamma C_{G 0}+C_{\text {load }}\right)$
- Note that this is the same expression we had when calculating discharge time
- $t=-\ln (0.5)\left(6 R_{N 0} \gamma C_{G 0}\right)\left(1+\frac{C_{\text {load }}}{3 W \gamma C_{G 0}}\right)$

Compared to the inverter, this term is $\mathbf{2 x}$ larger

