
EECS151/251A Discussion 5
Christopher Yarp

Feb. 21, 2019

Plan for Today

• FSM Practice
• Ready/Valid Interfaces
• Transistor Level Logic Implementation
• Logic with Mux & Pass Gates

FSM Practice

Designing a Door Controller for Cory 125
• The door is normally locked
• Any Cal1Card will unlock the door for 10 seconds.

• The card reader will not respond to another card during that time.

• Cory 125 has a motion detector on the inside of the door. When motion is detected, the
door may be opened from the inside for up to 30 seconds without sounding the alarm.
• Any use of a Cal1Card during this time should unlock the door for the appropriate amount of time.
• The alarm should not go off while the door is unlocked.
• The alarm may still be disabled by the motion detector after the door is locked again.
• Any activation of the motion detector while the alarm is disabled will delay the re-arming of the

alarm until 30 seconds later.

• If the door is opened without the motion detector being triggered or a Cal1Card being
used, the alarm sounds.
• The door can be returned to normal with the lab manager’s Cal1Card (ID = 0001).
• All entry into Cory 125 is disabled when the alarm is sounding.

• Timers for 10 and 30 seconds are provided
• Both have a start input which resets and starts the counter when asserted
• Both timers have a ”done” signal which will be brought high for 1 cycle when the timer expires

Designing a Door Controller for Cory 125

• Despite what seems like a simple job, the state machine for this
problem can get complex
• Mostly because of special cases we need to consider

• We’ll make this manageable by looking at each state, one at a time

Observations about this FSM

• Mealy vs. Moore
• We designed a Mealy style FSM for the door controller
• Would we need any extra states to formulate it as a Moore machine?

• How about all those times we restarted timers?

• If we had information on whether or not timers were running, we
probably could have eliminated the “Unlocked & Motion Detected”
state
• Would have required changing/adding arcs to the FSM

Ready/Valid Interfaces

Interfacing Between Modules & Ready/Valid

• Up to this point, we have been primarily using modules that we have
written ourselves.
• We know how the control logic for our modules works and how to interface

with it
• What if we want to integrate with modules written by others, without

knowing all the specifics of their control logic?

• Standard interfaces, such as ready/valid, help us do this

Semantics of Ready/Valid Transfer

• The producer (source, master) is
sending data to the consumer (sink,
slave)
• The data to be transferred is placed

on the ‘data’ line
• Valid = 1 indicates that the values on

the ‘data’ line are valid
• Ready = 1 indicates that the consumer

is ready to consume ‘data’ on the next
posedge of the clock
• A transfer occurs at the positive edge

of the clock when ready and valid are
both high

Producer
(Source)
(Master)

Consumer
(Sink)
(Slave)

data

valid

ready

clk clk

N

Semantics of Ready/Valid Transfer

x 1
clk

data

valid
ready

2

Transaction
Occurred

x 1
clk

data

valid

ready

x

Transaction
Occurred

x 1
clk

data

valid

ready

2

Transactions
Occurred

3

Semantics behind Ready/Valid Use

• What are the responsibilities for the producing and consuming
modules?
• When should producer required to pull the valid line high?

• Should the producer wait for the ready line to go high before pulling valid?
• When should the consumer pull the ready line high?

• Should the consumer wait for valid data to be present before pulling ready?

• Module writers taking opposing assumptions can result in deadlock
• Producer is waiting for consumer to become ready before raising valid high
• Consumer is waiting for the producer to present valid data before becoming

ready
• Nothing will ever happen! They will wait for each other forever!

AXI4-Stream Ready/Valid Semantics

• AXI4 Streaming is a Ready/Valid style interface standard which answers the
question of what the producer and consumer are responsible for
• Standard developed by ARM as part of the AMBA Series of Standards

• A common bus standard used in SoC and FPGA projects
• Most signal names have a ‘t’ prepended to them

• tvalid, tdata, tready
• Signal clock is called aclk
• Reset is called aresetn (active low)
• Contains additional optional control lines

• ex. tlast denotes the last word transferred in a packet
• Full specification available at:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/ind
ex.html (requires registration with ARM)

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0051a/index.html

AXI4-Stream Ready/Valid Semantics Summary

• Transfer occurs when both valid and ready are asserted (at a positive clock
edge)
• Producer:

• The producer is cannot to wait for ready to be high before asserting valid
• The producer must assert valid when possible

• The producer must hold valid high and data constant until transaction occurs
• Consumer:

• The consumer may wait for valid to be true before asserting ready
• This can waist a clock cycle

• The consumer may assert ready when no valid data is present
• This is the best option for most consumers as transactions will occur on the next clk rising edge

• The consumer is allowed to de-assert ready (if ready was already asserted) before valid
is asserted

Implementing Logic With Pass
Gates

Implementing Logic with Pass Gates

a
b c

0

1

a

1
c

b

a

b c

a

1

b

c

a

b

c

