EECS151/251A Discussion 4

Christopher Yarp
Feb. 15, 2019

Plan for Today

- Show another Verilog trick
- Talk briefly about Boolean Algebra and Optimization
- Answer your questions!
- Experiment!
- Break into groups to do a practice problem
- Reconvene to discuss solution
- Work on a problem as a class

The casez statement

Making HW2 Problem 2c Easier!

casez

- You want to use a case block

```
module circuit2_casez(a, y);
    input [3:0] a;
    output reg [1:0] y;
    always @(*)
        casez(a)
        4'b???1: y = 2'b11;
        4'b??10: y = 2'b10;
        4'b?100: y = 2'b01;
        4'b1000: y = 2'b00;
        default: y = a[1:0];
        endcase
endmodule
```

Boolean Algebra

Boolean Algebra: A mathematical way of looking at logic

- Basic operators: AND (\cdot, \wedge), OR (+, V), NOT (\neg, , , !, ~, or "bar" - ex: \bar{a})
- Like standard algebra, AND (•) takes precedence over OR (+). NOT takes precedence over AND
- $a^{\prime} b+b c=\left(\left(a^{\prime}\right) \cdot b\right)+(b \cdot c)$
- Like standard algebra, there are a set of laws that can be applied to Boolean expressions
- We can use these laws to simplify expressions

Important Properties

- Many properties are listed in Lecture 6 Slides
- Make a note of these properties, they will be useful!
- Here is a short summary of some (but not all) of them:

$a b=b c$	$a+b=b+a$	$a^{\prime \prime}=a$	
$(a b) c=a(b c)$	$(a+b)+c=a+(b+c)$	$a \cdot 0=0$	$a+1=1$
$a(b+c)=a b+a c$	$a+b c=(a+b)(a+c)$	$a \cdot 1=a$	$a+0=a$
$(a+b+\cdots+c)^{\prime}=a^{\prime} b^{\prime} \cdots c^{\prime}$	$(a b \cdots c)^{\prime}=a^{\prime}+b^{\prime}+\cdots+c^{\prime}$	$a \cdot a=a$	$a+a=a$
$a b^{\prime}+a b=a\left(b^{\prime}+b\right)=a(1)=a$	$a \cdot \bar{a}=0$	$a+\bar{a}=1$	

Useful Tricks

- You can introduce redundant terms
- $A B+B C=A B+B C+B C$
- Why would you want to do this? To introduce terms from which you can factor

Canonical Forms

- A Boolean expression can be converted to a set of canonical forms
- Sum of Product (SOP) is one canonical form consisting of the sum (OR) of a series of products (ANDs)
- Ex: $a b c+c d+e f g h$
- Product of Sum (POS) is another canonical form consisting of the product (AND) of a series of sums (ORs)
- Ex: $(x+y+z)(z+h)(h+i+j+k)$
- There are methods to derive the optimal 2 level logic expression (in SOP or POS form)
- K-maps are a tool which we can use by hand to find these simplified expressions

K-Maps

- Method by which we can more easily observe adjacencies in the truth table
- By constructing large rectangles that are even powers of 2 , we can derive the minimal SOP or POS expression

$\mathrm{CD} \backslash \mathrm{AB}$	00	01	11	10
00				
01				
11				
10				

Example K-Map for 4 Input Expression

K-Maps

	$A^{\prime} B^{\prime}$	$A^{\prime} B$	$A B$	$A B^{\prime}$
$\mathrm{CD} \backslash \mathrm{AB}$	00	01	11	10
00				
01				
11				
10				

	$\mathrm{CD} \backslash \mathrm{AB}$	00	01	11	10
$C^{\prime} D^{\prime}$	00				
$C^{\prime} D$	01				
$C D$	11				
$C D^{\prime}$	10				

K-Maps

	A^{\prime}		A	
$\mathrm{CD} \backslash \mathrm{AB}$	00	01	11	10
00				
01				
11				
10				

	$\mathrm{CD} \backslash \mathrm{AB}$	00	01	11	10
C^{\prime}	00				
	01				
C	11				
	10				

B^{\prime}		B		B^{\prime}
$\mathrm{CD} \backslash \mathrm{AB}$	00	01	11	10
00				
01				
11				
10				

	$\mathrm{CD} \backslash \mathrm{AB}$	00	01	11	10
D^{\prime}	00				
D	01				
	11				
D^{\prime}	10				

Finite State Machines (FSMs)

Finite State Machines (FSMs)

- Allows us to design/model complex systems by viewing a system as having a set of possible states it can be in
- The machine can only be in one state at a time
- There are rules dictating how the machine moves between states
- The output is either based solely on the current state (Moore style), the current state and current inputs (Mealy style), or a combination of these
- Very common in digital logic
- Often used to design "control logic"
- ASIC and FPGA labs will both be using FSMs like this
- So common that many EDA tools (including Vivado) have special optimization passes specifically for FSMs
- Can also be used in software, particularly in Real-Time Systems \& Mechatronics

Group Work

Problem 1

- Simplify the following expressions using a k-map:
module circuit1(a, b, c, y z)
input a, b, c;
output y, z;

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { assign } y=a \& b \& c|a \& b \& \sim c| a \& \sim b \& c ; \\
\text { assign } z=a \& b \mid \sim a \& \sim b ; \\
\text { endmodule }
\end{array}
\end{aligned}
$$

- Use Boolean Algebra to transform the original expression into the simplified one from your k-map

Problem 1

y

		A^{\prime}		A	
		$A^{\prime} B^{\prime}$	$A^{\prime} B$	$A B$	$A B^{\prime}$
	$\mathrm{C} \backslash \mathrm{AB}$	00	01	11	10
C^{\prime}	0			1	
C	1			1	1

Simplified Expr: $A B+A C$

$$
A B C+A B C^{\prime}+A B^{\prime} C
$$

$$
=A B C+A B C^{\prime}+A B C+A B^{\prime} C
$$

$$
=A B\left(C+C^{\prime}\right)+A C\left(B+B^{\prime}\right)
$$

$=A B(1)+A C(1)$
$=A B+A C$

		A^{\prime}		A	
		$A^{\prime} B^{\prime}$	$A^{\prime} B$	$A B$	$A B^{\prime}$
	$\mathrm{C} \backslash \mathrm{AB}$	00	01	11	10
C^{\prime}	0	1		1	
C	1	1		1	

Simplified Expr: $A B+A^{\prime} B^{\prime}$ Unchanged

