
EECS151/251A Discussion 4
Christopher Yarp

Feb. 15, 2019

Plan for Today

• Show another Verilog trick
• Talk briefly about Boolean Algebra and Optimization
• Answer your questions!
• Experiment!
• Break into groups to do a practice problem
• Reconvene to discuss solution
• Work on a problem as a class

The casez statement
Making HW2 Problem 2c Easier!

casez

• You want to use a case block
but you want to include
“don’t cares” / wildcards in
your case statements
instead of listing every
possible case
• casez allows you to insert ‘?’

to signify don’t cares /
wildcards

module circuit2_casez(a, y);
input [3:0] a;
output reg [1:0] y;
always @(*)

casez(a)
4'b???1: y = 2'b11;
4'b??10: y = 2'b10;
4'b?100: y = 2'b01;
4'b1000: y = 2'b00;
default: y = a[1:0];

endcase
endmodule

Boolean Algebra

Boolean Algebra: A mathematical way of
looking at logic
• Basic operators: AND (·, ∧), OR (+, ∨), NOT (¬, ‘, !, ~, or “bar” – ex: $%)
• Like standard algebra, AND (·) takes precedence over OR (+). NOT

takes precedence over AND
• %′' + ') = (%′) - ' + ' -)

• Like standard algebra, there are a set of laws that can be applied to
Boolean expressions
• We can use these laws to simplify expressions

Important Properties

• Many properties are listed in Lecture 6 Slides
• Make a note of these properties, they will be useful!
• Here is a short summary of some (but not all) of them:

!" = "$! + " = " + ! !′′ = !
!" $ = !("$) ! + " + $ = ! + (" + $) !) 0 = 0 ! + 1 = 1

! " + $ = !" + !$! + "$ = ! + " (! + $) !) 1 = ! ! + 0 = !
(! + " +⋯+ $)′ = !-"′⋯ $′ (!"⋯$)′ = !′ + "′ + ⋯+ $′ !) ! = ! ! + ! = !

!"′ + !" = ! "′ + " = ! 1 = ! !) .! = 0 ! + .! = 1

Useful Tricks

• You can introduce redundant terms
• !" + "$ = !" + "$ + "$
• Why would you want to do this? To introduce terms from which you can

factor

Canonical Forms

• A Boolean expression can be converted to a set of canonical forms
• Sum of Product (SOP) is one canonical form consisting of the sum (OR) of a

series of products (ANDs)
• Ex: !"# + #% + &'(ℎ

• Product of Sum (POS) is another canonical form consisting of the product
(AND) of a series of sums (ORs)
• Ex: (+ + , + -)(- + ℎ)(ℎ + / + 0 + 1)

• There are methods to derive the optimal 2 level logic expression (in
SOP or POS form)
• K-maps are a tool which we can use by hand to find these simplified

expressions

K-Maps

• Method by which we can more
easily observe adjacencies in the
truth table

• By constructing large rectangles
that are even powers of 2, we
can derive the minimal SOP or
POS expression

CD\AB 00 01 11 10

00

01

11

10

Example K-Map for 4 Input Expression

K-Maps

!"#′ !′# !# !#′
CD\AB 00 01 11 10
00
01
11
10

CD\AB 00 01 11 10
%"&′ 00
%′& 01
%& 11
C&′ 10

K-Maps

!′ ! !′
CD\AB 00 01 11 10
00
01
11
10

#′ #
CD\AB 00 01 11 10
00
01
11
10

CD\AB 00 01 11 10
$′ 00

01
$ 11

10

CD\AB 00 01 11 10
%′ 00
% 01

11
D′ 10

Finite State Machines (FSMs)

Finite State Machines (FSMs)

• Allows us to design/model complex systems by viewing a system as having
a set of possible states it can be in
• The machine can only be in one state at a time
• There are rules dictating how the machine moves between states
• The output is either based solely on the current state (Moore style), the current state

and current inputs (Mealy style), or a combination of these
• Very common in digital logic

• Often used to design “control logic”
• ASIC and FPGA labs will both be using FSMs like this

• So common that many EDA tools (including Vivado) have special optimization passes
specifically for FSMs

• Can also be used in software, particularly in Real-Time Systems &
Mechatronics

Group Work

Problem 1

• Simplify the following expressions using a k-map:
module circuit1(a, b, c, y z)
input a, b, c;
output y,z;

assign y = a & b & c | a & b & ~c | a & ~b & c;
assign z = a & b | ~a & ~b;

endmodule
• Use Boolean Algebra to transform the original expression into the

simplified one from your k-map

Problem 1
y z

!′ !
!#$′ !′$!$!$′

C\AB 00 01 11 10
%′ 0 1
% 1 1 1

Simplified Expr: !$ + !%
!$% + !$%′ + !$′%
= !$% + !$%′ + !$% + !$′%
= !$ % + %′ + !% $ + $′
= !$ 1 + !% 1
= !$ + !%

!′ !
!#$′ !′$!$!$′

C\AB 00 01 11 10
%′ 0 1 1
% 1 1 1

Simplified Expr: !$ + !#$′
Unchanged

