FECS151/251A Discussion 4

Christopher Yarp
Feb. 15, 2019

Plan for Today

* Show another Verilog trick
 Talk briefly about Boolean Algebra and Optimization
* Answer your questions!

* Experiment!
* Break into groups to do a practice problem
* Reconvene to discuss solution
* Work on a problem as a class

The casez statement

Making HW2 Problem 2c Easier!

CaSe’s

* You want to use a case block module circuit2_casez(a, y);

. input [3:0] a;
but you want to include output reg [1:0] y;

“don’t cares” / wildcards in always @(*)

your case statements CaZ?kZ)gggl -

. . L. rerll Yy = 5

mste.ad of listing every 4'b??10: y = 2'b10:

possible case 4'b?100: y = 2'bo1l;

: (7 4'b1000: y = 2'bo0;

° P,)

casez a.llows you to insert default: y = a[1:0];

to signify don’t cares / endcase

wildcards endmodule

Boolean Algebra

Boolean Algebra: A mathematical way of

looking at logic

 Basic operators: AND (-, A), OR (+, V), NOT (—, /!, ~, or “bar” — ex: a)
* Like standard algebra, AND (-) takes precedence over OR (+). NOT
takes precedence over AND
cab+bc=(a)-b)+(b-c)
* Like standard algebra, there are a set of laws that can be applied to

Boolean expressions
* We can use these laws to simplify expressions

Important Properties

* Many properties are listed in Lecture 6 Slides
* Make a note of these properties, they will be useful!
e Here is a short summary of some (but not all) of them:

ab = bc a+b=b+a a'=a
(ab)c = a(bc) (a+b)+c=a+(b+0) a-0=0 a+1=1
a(b+c) =ab + ac a+bc=(a+b)(a+c) a-1=a a+0=a
(a+b+:--+c) =ab" - (ab--c) =a +b' +--+(a-a=a at+a=a
ab'+ab=a(b'+b) =a(l) =a a-a=20 at+a=1

Useful Tricks

* You can introduce redundant terms
e AB+ BC = AB + BC + BC

* Why would you want to do this? To introduce terms from which you can
factor

Canonical Forms

* A Boolean expression can be converted to a set of canonical forms

e Sum of Product (SOP) is one canonical form consisting of the sum (OR) of a
series of products (ANDs)

* Ex:abc +cd + efgh

* Product of Sum (POS) is another canonical form consisting of the product
(AND) of a series of sums (ORs)

s Ex:(x+y+2z)(z+h)(h+i+j+k)

* There are methods to derive the optimal 2 level logic expression (in
SOP or POS form)

e K-maps are a tool which we can use by hand to find these simplified
expressions

K-Maps

* Method by which we can more

easily observe adjacencies in the ows | 00 | or " 0
truth table 00
* By constructing large rectangles 01
that are even powers of 2, we 11
can derive the minimal SOP or 10

POS expression Example K-Map for 4 Input Expression

K-Maps

A'B’ A'B AB AB’

CD\AB 00 01 11 10
00
01
11
10

CD\AB 00 01 11 10
C'D’ 00
C'D 01
CD 11
CD’ 10

K-Maps

Al

CD\AB

00

01

11

10

00

01

11

10

BI

BI

CD\AB

00

01

11

10

00

01

11

10

CD\AB 00 01 11 10
C' 00
01
C 11
10

CD\AB 00 01 11 10
D’ 00
D 01
11
D’ 10

Finite State Machines (FSMs)

Finite State Machines (FSMs)

 Allows us to design/model complex systems by viewing a system as having
a set of possible states it can be in
 The machine can only be in one state at a time
* There are rules dictating how the machine moves between states

* The output is either based solely on the current state (Moore style), the current state
and current inputs (Mealy style), or a combination of these

* Very common in digital logic

e Often used to design “control logic”
* ASIC and FPGA labs will both be using FSMs like this

* So common that many EDA tools (including Vivado) have special optimization passes
specifically for FSMs

e Can also be used in software, particularly in Real-Time Systems &
Mechatronics

Group Work

Problem 1

* Simplify the following expressions using a k-map:
module circuitl(a, b, ¢, y z)

input a, b, c;

output vy, z;

assighy =a &b&c| a&b&-~c| a&-~b&c;
assign z = a & b | ~a & ~b;
endmodule

e Use Boolean Algebra to transform the original expression into the
simplified one from your k-map

Problem 1

Simplified Expr: AB + AC

ABC + ABC' + AB'C

Yy
T
A'B' | A'B | AB | AB’
C\AB | 00 | 01 | 11 | 10
¢ | o
e

= ABC + ABC' + ABC + AB'C
=AB(C +C") + AC(B + B")

= AB(1) + AC(1)
= AB + AC

N
A'B" | A'B AB AB’
C\AB 00 01 11 10

c

Simplified Expr: AB + A'B’

Unchanged

