
EECS151/251A Discussion 3
Christopher Yarp

Feb. 8, 2019

Latches

Latches

• There are several different flip-flop and latch types discussed in
literature and the nomenclature can disagree at times.
• In this class:
• a “flip-flop” is assumed to be a d flip-flop (edge triggered)
• a “latch” is assumed to be a device that passes a signal through when enabled

(transparent) and holds the most recent value of its output when disabled
(opaque)

• They key difference between the flip-flop and latch is that the flip-flop
only updates it’s output on a clock edge while the latch updates its
output whenever its enable line is high and holds it otherwise

Inferring Latches in Verilog

• Latches can be inferred in Verilog by not assigning a reg type in all
possible cases
• In the case when the reg type was not assigned, Verilog assumes it’s

value should remain unchanged
• This requires the previous value to be held …
• … which requires a latch

Inferring Latches in Verilog
Combinational
module combo(input a, input b, input c, output reg d);
always @(*) begin

if(a) begin
d = b & c;

end else begin
d = b;

end
end
endmodule
endmodule

Latched (Sequential)
module latched(input a, input b, input c, output reg d);
always @(*) begin

if(a) begin
d = b & c;

end
end
endmodule

WARNING: [Synth 8-327]
inferring latch for variable
'd_reg'

Inferring Latches in Verilog

• Assigning a reg type to itself in an always
@(*) block also infers a latch

module self_loop(input a, input
b, input c, output reg d);
always @(*) begin

if(a) begin
d = b & c;

end else begin
d = d;

end
end
endmodule

Unintentional Latch Inference

• Unintentional latch inference is one of the more common bugs you
will probably come across
• Especially when writing a big case statement or if/else tree (for

example in an FSM), it can be easy to overlook assigning a reg type in
all cases
• Many synthesis tools will emit a warning if they infer a latch, look for

these warnings and make sure any you see are intentional
• Vivado Synthesis Log: WARNING: [Synth 8-327] inferring latch for variable

'd_reg'

Updating our understanding of always @
blocks

always @(*)
• Describes a combinational circuit if reg

types are assigned in all possible cases
• Describes a sequential circuit (with

latches) if reg types are not assigned in all
cases
• Or are assigned to themselves

• **Describes a sequential circuit (with
latches) if not all signals are in the
sensitivity list
• The synthesis tools may assume you meant

to include the signal in the sensitivity list ->
Vivado does

• Your simulator may not make the same
assumption!

Always @(posedge clk)
• Describes sequential circuits (with flip-

flops)

Blocking vs. Non-Blocking
Assignment Conventions
… and why you should follow them

Sequential Logic

Non-Blocking
always @(posedge clk)
begin

c <= a & b;
e <= c | d;

end

Blocking
always @(posedge clk)
begin

c = a & b;
e = c | d;

end

Are these the same module?

Sequential Logic
Non-Blocking Blocking

Are these the same module? – No

Cycle A B D Non-Blocking Blocking
0 0 1 0 x x
1 1 1 0 x 0
2 1 1 0 0 1
3 1 1 0 1 1
4 1 1 0 1 1

Combinational Logic

Blocking
always @(a, b, d)
begin

c = a & b;
e = c | d;

end

Non-Blocking
(Input Sensitivity)
always @(a, b, d)
begin

c <= a & b;
e <= c | d;

end

Non-Blocking
(Intermediate Sensitivity)
always @(a, b, d, c)
begin

c <= a & b;
e <= c | d;

end

Are these the same module?

Combinational Logic

Blocking
Non-Blocking
(Input Sensitivity)

Non-Blocking
(Intermediate Sensitivity)

Are these the same module? – ??

Cycle A B D Blocking Non-Blocking
(Input Sensitivity)

Non-Blocking
(Intermediate Sensitivity)

0 0 1 0 0 x 0

1 1 1 0 1 0 1

2 1 1 0 1 0 1

3 1 1 0 1 0 1

WARNING: [Synth 8-567] referenced signal
'c' should be on the sensitivity list
[/home/cyarp/test_blocking/combinational
_nonblocking_input_only.v:33]

Looks like a
latch.
Where is it??

Keep to the Rules of Thumb
• Sequential Logic: Use non-blocking assignments
• Combinational Logic: Use blocking assignments
• You can always break up your sequential logic into combinational and sequential components

• Allows you to cleanly have intermediates in your combinational logic

always @(*)
begin

c = a & b;
next_state = c | state;

end

always @(posedge clk)
begin

state <= next_state;
end

D Q

clk

Comb.
Logic

Comb.
Logic

Implementing Logic Functions
with LUTs

LUT

• LUT is short for “Look Up Table”
• The number of rows in the table is 2N where N = number of input bits
• There is 1 row for every possible input combination
• If you view the inputs as a single multiple bit wide wire, you can think of it as

specifying an address in the LUT
• The designer determines what the output will be for each row of the

table

Implementing Functions with LUTs

• You can view the entries of an N-input LUT as being entries in a truth
table for an N-input combinational logic block
• Since the LUT contains a row for every possible combination of inputs,

we can implement any combination function by specifying the output
values for each row in the table

What function is this?

• This LUT only outputs 1 when A,
B, and C are all true.
• This LUT is implementing A&B&C

{C,B,A} C B A Out
0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 0
4 1 0 0 0
5 1 0 1 0
6 1 1 0 0
7 1 1 1 1

What function is this?

• This outputs 1 only when exactly
1 of A, B, and C are true
• A&(~B)&(~C) | (~A)&B&(~C) |

(~A)&(~B)&C

{C,B,A} C B A Out
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 0
7 1 1 0 0
7 1 1 1 0

Implementing Functions with LUTs

• If you can write a truth table for it (which you can with any
combinational block), you can implement it with a single LUT!

• This does not necessarily mean you should implement all
combinational functions with a single LUT:
• A combinational block with 64 inputs would require a LUT of 264 ≅ 1.84x1019

entries! Just storing all of the output bits would require 2305843 TB of data!
• When would you want a 64 input combinational block? How about a 32 bit adder (32

bits for each input operand)

• There is likely a more efficient way of implementing a 64 input combinational
block

Building Larger LUTs
… with smaller LUTs

d c b a out
0 0 0 0 o1

0 0 0 1 o2

0 0 1 0 o3

0 0 1 1 o4

0 1 0 0 o5

0 1 0 1 o6

0 1 1 0 o7

0 1 1 1 o8

1 0 0 0 o9

1 0 0 1 o10

1 0 1 0 o11

1 0 1 1 o12

1 1 0 0 o13

1 1 0 1 o14

1 1 1 0 o15

1 1 1 1 o16

Building Larger LUTs

• Let’s say we have 3 input LUTs, is
there a way we could create a 4
input LUT?
• Yes, let’s look at the truth table for

a 4 input LUT
• The bottom half of the table looks

like a repeat of the top half of the
table except …
• The top half of the table is when d is

0, the bottom half is when d is 1
• The top and bottom halves of the

table have different outputs

d c b a out
0 0 0 0 o1

0 0 0 1 o2

0 0 1 0 o3

0 0 1 1 o4

0 1 0 0 o5

0 1 0 1 o6

0 1 1 0 o7

0 1 1 1 o8

1 0 0 0 o9

1 0 0 1 o10

1 0 1 0 o11

1 0 1 1 o12

1 1 0 0 o13

1 1 0 1 o14

1 1 1 0 o15

1 1 1 1 o16

d c b a out
0 0 0 0 o1

0 0 0 1 o2

0 0 1 0 o3

0 0 1 1 o4

0 1 0 0 o5

0 1 0 1 o6

0 1 1 0 o7

0 1 1 1 o8

1 0 0 0 o9

1 0 0 1 o10

1 0 1 0 o11

1 0 1 1 o12

1 1 0 0 o13

1 1 0 1 o14

1 1 1 0 o15

1 1 1 1 o16

Let’s split the table
d c b a out
0 0 0 0 o1

0 0 0 1 o2

0 0 1 0 o3

0 0 1 1 o4

0 1 0 0 o5

0 1 0 1 o6

0 1 1 0 o7

0 1 1 1 o8

1 0 0 0 o9

1 0 0 1 o10

1 0 1 0 o11

1 0 1 1 o12

1 1 0 0 o13

1 1 0 1 o14

1 1 1 0 o15

1 1 1 1 o16

c b a out
0 0 0 o1

0 0 1 o2

0 1 0 o3

0 1 1 o4

1 0 0 o5

1 0 1 o6

1 1 0 o7

1 1 1 o8

c b a out
0 0 0 o9

0 0 1 o10

0 1 0 o11

0 1 1 o12

1 0 0 o13

1 0 1 o14

1 1 0 o15

1 1 1 o16

When d is 0:

When d is 1:

Select which table to use

c b a out
0 0 0 o1

0 0 1 o2

0 1 0 o3

0 1 1 o4

1 0 0 o5

1 0 1 o6

1 1 0 o7

1 1 1 o8

c b a out
0 0 0 o9

0 0 1 o10

0 1 0 o11

0 1 1 o12

1 0 0 o13

1 0 1 o14

1 1 0 o15

1 1 1 o16

When d is 0: When d is 1:

a

b

c

d

out

Simulation

Initial blocks

• Initial blocks are executed at the start of the simulation
• In general, initial blocks are not synthesized

• You can have multiple initial blocks in the same module
• Each will run in parallel starting at the beginning of the simulation

initial begin
$dumpfile("dump.vcd");
$dumpvars;

a = 1;
#4
a = 0;
#10
$finish();

end

initial begin
#1
forever begin
$strobe("time: %4d, a: %b, b: %b, c:

%b", $time, a, b, c);
#2;

end
end

Forever blocks

• Will execute a sequence of Verilog statements repeatedly forever (until the
simulation ends)

initial begin
#1; //Wait 1 Cycle
forever begin //Print out values every 2 cycles
$strobe("time: %4d, a: %b, b: %b", $time, a, b);
#2;

end
end

Waiting for Events
• So far, we have used the delay statement, #
• If we want to wait for a particular even to happen, we can use another type of statement: @(posedge signal)

or @(negedge signal)

initial begin
$dumpfile("dump.vcd");
$dumpvars;
a = 1;
@(negedge clk) //Continue simulation until the next negative edge of clk
a = 0;
@(negedge clk) //Continue simulation until the next negative edge of clk
#4 //Continue for 4 periods
$finish();

end

Repeat blocks

• You may want to repeat a block of Verilog a fixed number of times
• Repeat blocks let you do that

repeat (10) begin //Repeat this 10 times
signal = ~glitchy_signal;
@(negedge clk);

end

And even more …

• There are other loop statements in Verilog
• For loops
• While loops
• Note that these are different from generate loops

• You can also fork multiple parallel threads of execution in an initial
block, wait for all of them to finish, then continue executing Verilog
expressions
• These are called fork-join blocks
• Having multiple initial blocks is also a way to create multiple parallel threads

of execution that all start when the simulation starts

