FECS151/251A Discussion 2

Christopher Yarp
Feb. 1, 2019

Verilog

Hardware Description Language

* The lecture, the FPGA lab, and the ASIC lab all involve describing
hardware designs!

* How do we describe a hardware design?
 Hardware Description Languages (HDL)

* Many HDLs Exist:
* Verilog
 VHDL
* SystemVerilog

e SystemC
* Chisel

HDLs are not Like C

* People commonly say that Verilog has a C like syntax
e Operators (+, -, &&, | [, ...) are generally the same
* Both use semicolons at the ends of statements
* Single line comments start with //, block comments are enclosed in /* ... */

* That is pretty much where the similarities end

* HDLs are languages for describing a hardware design
* Combinational logic will be running in parallel ... at all times!

* If any input to combinational logic changes, it will immediately begin
producing the new result (output will come after some delay)

* Multiple state elements can change state simultaneously at a clock edge

Using HDLs

P P & C 1 @® NotSecure | inst.eecs.berkeley.edu/~eecs151/sp19/resources/ w @ Q :
M a ny H.D LS O rlgl n ate d a S 2 Apps [EZproxy UCB Introduction to Di... Sign In - Wolfram|... » 3 Other Bookmarks
simulation languages

* Not all Verilog is “synthesizable”
(can be interpreted by the FPGA Resources
or ASIC tools to represent a Textbooks

d eS I g n) ¢ Recommended Digital Design and Computer Architecture, 2nd ed, David Money Harris & Sarah L. Harris
« Recommended Digital Integrated Circuits: A Design Perspective, Jan M. Rabaey, Anantha Chandrakasan,

° You Wi” be Working With a . LBerei:l:):eChl\/lligzli\?LSI Design, Neil Weste, David Harris
subset of the Verilog language Veriog

* Look over the “Verilog Primer” « erlog Primer S

e wire vs reg, from the CS150 Spring 2009 class.

SI |d es on th e We bs |te « always@ blocks, from the CS150 Fall 2009 class.
e FSMs in Verilog
 Under “Resources”

EECSWS]/QEHA SDriﬂg 2019 Home Outline |Resources | Piazza Gradescope Archives

The always @ block

* always @ blocks have the following syntax:
always @(sensitivity list) begin ... end

* At a high level, you are telling Verilog the statements contained in the
always @ block should only change when a signal in the sensitivity list
has changed

The always @ block — Combinational Logic

* For combinational logic, you should
list any referenced signal

* asignals that appears on the right hand
side of assignment statements

* asignal used in a conditional statement

* Supplying an incomplete sensitivity
list can result in unexpected behavior

. \é)e(ril)og allows you to specify always
* With this, Verilog will determine the

proper combinational logic sensitivity list
for you!

* Use this whenever you want to use an
ialways block to describe combinational
ogic.

reg out;

wire, a, b, c;

always @(a, b, c) begin
if(a) begin

out = b;

end else begin
out = c;

end

end

The always @ block — Sequential Logic

* The sensitivity list allows us to describe sequential logic (registers)
* Use posedge or negedge to describe an edge triggered flip-flop (register)

wire clk, D;

reg Q;

always @(posedge clk) begin _D/\Q_
Q <= Dj clk—

end

* |n this case, when there is a 0->1 transition of clk, the body of the always
block occurs.

* In this case, it assigns Q to the value of D

Reg vs. Wires

wire reg

* Used when connecting modulesin ¢ Despite what it’s name implies, reg
structural Verilog types are not always registers

wire a, b, clk; e Any assignment made inside an

always block must be to a reg
* Including always @(*) blocks

e Used for continuous assignments T :
* |f the sensitivity list contains an

wire a, b, ¢; edge event (ex. posedge clk), reg
assigna=>b | c; types will likely be inferred as
registers™

e *depending on the type of
assignment statement used

Multiple Assignments

* You cannot assigh a wire more than once * However, Y\Qu can assign a reg in multiple
places within an always @ block

assign a = b; always @(posedge clk) begin

assign a = c; //Bad! a <= b;
if(d>16°d5) begin
* This creates a “multi-driver” net which is a <=6
not allowed by most synthesis tools. end
* What happenswhenbisOandcis1? end
Is‘@a’”0or1l?

* What happensifbislandcis1?

() ‘p .)) V24
Is'a’ 0, 1, or 2: * The last assignment statement “executed

will be the one that ultimately assigned.
e a<=cifd>16'd5
* Otherwisea<=b

e Can be used to set a “default value" for a reg

Blocking Vs. Nonblocking Assignments

Blocking Assignment (=)

* The assignment takes place immediately (with
respect to other assignments).

* Any reference to the assigned reg in a later
statement will see its new value

e Use this for combinational logic

reg c, out;

wire a, b, d;

always @(*) begin
c =a | b;
out = ¢ & d;

end

Equivalent to: out=(a | b) & d

Nonblocking Assignment (<=)

The assignment is deferred until the end of the time step
(until all the right hand sides have been evaluated)

* Logic can reference the values of registers before they are
updated in this cycle (ie. values immediatly before the
clock edge)

* Allows multiple registers to be written to simultaneously
(order does not matter)

* Use this for sequential logic
reg c, out;
wire a, b, clk;

always @(posedge clk) begin
//use val of ‘out’ before clk edge
c <= out | a;
//use val of ‘c’ before clk edge
out <= c & b;

end

Generate for loops are not like C loops

* You are not describing iterations of execution * The generate loop is structurally equivalent to

* Cannot store a value in a temporary variable to : . .
be read and overwritten in the next iteration wire [2:0] a;
wire [3:0] b;

* Think of it like writing a little program that
writes Verilog

genvar 1i; mod inst loop @(.a(a[@]), .b(b[@]),
wire [2:0] a; .c(b[1]));

: . . mod inst loop 1(.a(af[l1l]), .b(b[1]),
wire [3:0] b; o) T; p_1(.a(a[1]) (b[1])
generate mod inst loop 2(.a(a[2]), .b(b[2]),
for(i = @; i<3; i = i+1l) begin:loop .c(b[3]));

mod inst(.a(a[i]), .b(b[i]),

-c(b[1+1])); * If you want a C like loop using a single
end irr\]stance 01;? module, you neﬁd to clonstrlljct
the control logic to manage the multi-cycle
endgenerate execution yourself — generate for will not do it

for you

Simulating Verilog

Simulating Verilog

* ASIC Lab has started talking about this already
* FPGA Lab will coveritin Lab 3
* I’ll show you a simple example today

* Need a testbench to specify your test case

e Typically is a module that instantiates the module your are interested as the
DUT (device under test)

e Typically uses an “initial” block to manipulate signals
* Initial blocks are run at the start of the simulation

An Example Testbench

“timescale 1ns/1ns a = 5'do; //Set inputs

module reg tester(); //Print these values at the end of the current simulation step
reg clk; $strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);
reg [4:0] a; #4; //Go for 4 ns

wire [4:0] b; $strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);
#1; //Go for 1 ns
$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);
//Set the initial state of the clock
#1; //Go for 1 ns

initial clk = ©;

a = 5°d2; //Set inputs

$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);
//Every 4 timesteps (1ns/step) flip the clock #6: //Go for 6 ns
always #(4) clk <= ~clk; $strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);
#1; //Go for 1 ns
//Instantiate the DUT $strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);
five bit flip flop dut(.clk(clk), .d(a), .q(b)); #8; //Run for another clock cycle + 1ns

$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);
initial begin $finish(); //End the simulation

$dumpfile("dump.vcd"); //Setup file dump (for waveform viewer) end

$dumpvars; //Dump signals to dumpfile endmodule

Result!

From: Ons To: 21ns

Get Signals =~ Radix ~ Q Q 100% “« »

N
0 I

e T
B |

| |
—

”X” means unknown t:!.me: @, d. @, b: X, Clk: @
time: 4, a: 9, b: 9, clk: 1
time: 5, a: O, b: 0, clk: 1
time: 6, a: 2, b: 0, clk: 1
time: 12, a: 2, b: 2, clk: 1
time: 13, a: 2, b: 2, clk: 1

‘II

Some useful “System Tasks”

Sstrobe(“format str”, values ...)
* Prints values to the console. Is executed at the very end of the current cycle (after all
changes have propagated)
* In Verilog parlance, this executes after “all simulation events have occurred for the simulation time”
Stime
* Get the current simulation time
Smonitor(“format str”, values ...)

* Prints values to the console when any of them change
* Only 1 monitor statement can be active at a time

Sfinish()
* End the simulation

Sdisplay(“format str”, values ...)
« Similar to Sstrobe except it is not guaranteed to be executed at the end of the current cycle

Printing every cycle

“timescale 1ns/1ns
module reg tester();
reg clk;

reg [4:0] a;

wire [4:0] b;

//Set the initial state of the clock
initial clk = ©;

//Every 4 timesteps (1ns/step) flip the clock
always #(4) clk <= ~clk;

//Instantiate the DUT
five_bit_flip flop dut(.clk(clk), .d(a), .q(b));

initial begin

$dumpfile("dump.vcd"); //Setup file dump (for waveform viewer)

$dumpvars; //Dump signals to dumpfile

a = 5'de; //Set inputs
#6; //Go for 6 ns
a = 5’d2; //Set inputs
#15; //Go for 6 ns
$finish(); //End the simulation
end
initial begin
forever begin
$strobe("time: %4d, a: %d, b: %d, clk: %b"
#1;
end
end

endmodule

, $time, a, b, clk);

Result!

OO0 HATAACOO OO TATATHAOOODOH

MNNMYNVMNVNNNNNNNNNNNNNNNNN
—A—AA—AA—AA—AA—AA—AA—A A~ — —
VUUUUULUUULUUUUVUUUVUUUULUU

A A A A A A A A A A A A A A A A A n

OO AANANANANANANANAN

X
OO0 bbbbbbbb bbbbbbbbbbb

L W W W W N S O N N N S S N S O e T)

@@@@@@222222222222222

aaaaaaaaaaaaaaaaaaaaa
L e Y o e We WG W W e e Te e Te W0 W W W Y0 Y e T}
O ANMLNUONOOOOETANMNSLINONON®

dredrd A A N
JNORONONIRINIRONIONIRONINIRONINONINININ I NG
EEEEEEEEEEEEEEEEEEEEE
o K o BT o T T o KT o T K o Y o Yy I K o Y o Yo K o Y o Yo K o BT o R o K |

t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t

Monitoring

“timescale 1ns/1ns
module reg tester();
reg clk;

reg [4:0] a;

wire [4:0] b;

//Set the initial state of the clock
initial clk = ©;

//Every 4 timesteps (1ns) flip the clock
always #(4) clk <= ~clk;

//Instantiate the DUT
five_bit_flip flop dut(.clk(clk), .d(a), .q(b));

initial begin

$dumpfile("dump.vcd"); //Setup file dump (for waveform

viewer)

$dumpvars; //Dump signals to dumpfile

a = 5'de; //Set inputs
#6; //Go for 6 ns
a = 5'd2;
#15; //Go for 6 ns
$finish(); //End the simulation
end
initial begin

$monitor("time: %4d, a: %d, b: %d, clk: %b"
clk);

end

endmodule

, $time, a, b,

Results

time:
time:
time:
time:
time:
time:
time:

(A I « DI « DI « DI o D I « D I « B

\o \o

\o

\o

\o

NNDNNMNNOO
o

\o

O O O O O 0O 0O

o o

o

o

o

NNDNNOO O X
\o

o

cl
cl
cl
cl
cl
cl
cl

AN AN AN AN AN A A

RPORORRLP®

Simulating in this class

VCS
* Introduced in ASIC Lab 2
* Installed on Cory 125 Computers

ModelSim
* Introduced in FPGA Lab3
* Installed on Cory 125 Computers
e Educational version (PE) available for Windows

Vivado Simulator
* Introduced in FPGA Lab 3
* Installed on Cory 125 Computers
* Free version (WebPack) can be installed on Linux and Windows (Mac needs a VM)

 Install Vivado 2017.4 if you are in the FPGA Lab
EDA Playground (https://www.edaplayground.com)

* Free Web Based Simulator
* Requires Registration

https://www.edaplayground.com/

