
EECS151/251A Discussion 2
Christopher Yarp

Feb. 1, 2019

Verilog

Hardware Description Language

• The lecture, the FPGA lab, and the ASIC lab all involve describing
hardware designs!
• How do we describe a hardware design?
• Hardware Description Languages (HDL)

• Many HDLs Exist:
• Verilog
• VHDL
• SystemVerilog
• SystemC
• Chisel
• …

HDLs are not Like C

• People commonly say that Verilog has a C like syntax
• Operators (+, -, &&, ||, …) are generally the same
• Both use semicolons at the ends of statements
• Single line comments start with //, block comments are enclosed in /* … */

• That is pretty much where the similarities end
• HDLs are languages for describing a hardware design
• Combinational logic will be running in parallel … at all times!
• If any input to combinational logic changes, it will immediately begin

producing the new result (output will come after some delay)
• Multiple state elements can change state simultaneously at a clock edge

Using HDLs

• Many HDLs originated as
simulation languages
• Not all Verilog is “synthesizable”

(can be interpreted by the FPGA
or ASIC tools to represent a
design)
• You will be working with a

subset of the Verilog language
• Look over the “Verilog Primer”

Slides on the Website
• Under “Resources”

The always @ block

• always @ blocks have the following syntax:
always @(sensitivity list) begin … end

• At a high level, you are telling Verilog the statements contained in the
always @ block should only change when a signal in the sensitivity list
has changed

The always @ block – Combinational Logic

• For combinational logic, you should
list any referenced signal
• a signals that appears on the right hand

side of assignment statements
• a signal used in a conditional statement

• Supplying an incomplete sensitivity
list can result in unexpected behavior
• Verilog allows you to specify always

@(*)
• With this, Verilog will determine the

proper combinational logic sensitivity list
for you!

• Use this whenever you want to use an
always block to describe combinational
logic.

reg out;
wire, a, b, c;
always @(a, b, c) begin

if(a) begin
out = b;

end else begin
out = c;

end
end

The always @ block – Sequential Logic

• The sensitivity list allows us to describe sequential logic (registers)
• Use posedge or negedge to describe an edge triggered flip-flop (register)

wire clk, D;
reg Q;
always @(posedge clk) begin

Q <= D;
end

• In this case, when there is a 0->1 transition of clk, the body of the always
block occurs.
• In this case, it assigns Q to the value of D

D Q

clk

Reg vs. Wires

wire
• Used when connecting modules in

structural Verilog
wire a, b, clk;

• Used for continuous assignments
wire a, b, c;
assign a = b | c;

reg
• Despite what it’s name implies, reg

types are not always registers
• Any assignment made inside an

always block must be to a reg
• Including always @(*) blocks

• If the sensitivity list contains an
edge event (ex. posedge clk), reg
types will likely be inferred as
registers*
• *depending on the type of

assignment statement used

Multiple Assignments

• You cannot assign a wire more than once

assign a = b;
assign a = c; //Bad!

• This creates a “multi-driver” net which is
not allowed by most synthesis tools.
• What happens when b is 0 and c is 1?

Is ‘a’ 0 or 1?
• What happens if b is 1 and c is 1?

Is ‘a’ 0, 1, or 2?

• However, you can assign a reg in multiple
places within an always @ block

always @(posedge clk) begin
a <= b;
if(d>16’d5) begin

a <= c;
end

end

• The last assignment statement ”executed”
will be the one that ultimately assigned.
• a <= c if d>16’d5
• Otherwise a <= b

• Can be used to set a “default value" for a reg

Blocking Vs. Nonblocking Assignments
Blocking Assignment (=)
• The assignment takes place immediately (with

respect to other assignments).
• Any reference to the assigned reg in a later

statement will see its new value
• Use this for combinational logic
reg c, out;
wire a, b, d;
always @(*) begin

c = a | b;
out = c & d;

end

Equivalent to: out = (a | b) & d

Nonblocking Assignment (<=)
• The assignment is deferred until the end of the time step

(until all the right hand sides have been evaluated)
• Logic can reference the values of registers before they are

updated in this cycle (ie. values immediatly before the
clock edge)

• Allows multiple registers to be written to simultaneously
(order does not matter)

• Use this for sequential logic
reg c, out;
wire a, b, clk;
always @(posedge clk) begin

//use val of ‘out’ before clk edge
c <= out | a;
//use val of ‘c’ before clk edge
out <= c & b;

end

Generate for loops are not like C loops

• You are not describing iterations of execution
• Cannot store a value in a temporary variable to

be read and overwritten in the next iteration
• Think of it like writing a little program that

writes Verilog
genvar i;
wire [2:0] a;
wire [3:0] b;
generate
for(i = 0; i<3; i = i+1) begin:loop
mod inst(.a(a[i]), .b(b[i]),

.c(b[i+1]));
end

endgenerate

• The generate loop is structurally equivalent to
wire [2:0] a;
wire [3:0] b;

mod inst_loop_0(.a(a[0]), .b(b[0]),
.c(b[1]));
mod inst_loop_1(.a(a[1]), .b(b[1]),
.c(b[2]));
mod inst_loop_2(.a(a[2]), .b(b[2]),
.c(b[3]));

• If you want a C like loop using a single
instance of a module, you need to construct
the control logic to manage the multi-cycle
execution yourself – generate for will not do it
for you

Simulating Verilog

Simulating Verilog

• ASIC Lab has started talking about this already
• FPGA Lab will cover it in Lab 3
• I’ll show you a simple example today

• Need a testbench to specify your test case
• Typically is a module that instantiates the module your are interested as the

DUT (device under test)
• Typically uses an “initial” block to manipulate signals

• Initial blocks are run at the start of the simulation

An Example Testbench
`timescale 1ns/1ns

module reg_tester();

reg clk;

reg [4:0] a;

wire [4:0] b;

//Set the initial state of the clock

initial clk = 0;

//Every 4 timesteps (1ns/step) flip the clock

always #(4) clk <= ~clk;

//Instantiate the DUT

five_bit_flip_flop dut(.clk(clk), .d(a), .q(b));

initial begin

$dumpfile("dump.vcd"); //Setup file dump (for waveform viewer)

$dumpvars; //Dump signals to dumpfile

a = 5'd0; //Set inputs

//Print these values at the end of the current simulation step

$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);

#4; //Go for 4 ns

$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);

#1; //Go for 1 ns

$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);

#1; //Go for 1 ns

a = 5’d2; //Set inputs

$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);

#6; //Go for 6 ns

$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);

#1; //Go for 1 ns

$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);

#8; //Run for another clock cycle + 1ns

$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);

$finish(); //End the simulation

end

endmodule

Result!

time: 0, a: 0, b: x, clk: 0
time: 4, a: 0, b: 0, clk: 1
time: 5, a: 0, b: 0, clk: 1
time: 6, a: 2, b: 0, clk: 1
time: 12, a: 2, b: 2, clk: 1
time: 13, a: 2, b: 2, clk: 1

”X” means unknown

Some useful “System Tasks”

• $strobe(“format str”, values …)
• Prints values to the console. Is executed at the very end of the current cycle (after all

changes have propagated)
• In Verilog parlance, this executes after “all simulation events have occurred for the simulation time”

• $time
• Get the current simulation time

• $monitor(“format str”, values …)
• Prints values to the console when any of them change
• Only 1 monitor statement can be active at a time

• $finish()
• End the simulation

• $display(“format str”, values …)
• Similar to $strobe except it is not guaranteed to be executed at the end of the current cycle

Printing every cycle
`timescale 1ns/1ns

module reg_tester();

reg clk;

reg [4:0] a;

wire [4:0] b;

//Set the initial state of the clock

initial clk = 0;

//Every 4 timesteps (1ns/step) flip the clock

always #(4) clk <= ~clk;

//Instantiate the DUT

five_bit_flip_flop dut(.clk(clk), .d(a), .q(b));

initial begin

$dumpfile("dump.vcd"); //Setup file dump (for waveform viewer)

$dumpvars; //Dump signals to dumpfile

a = 5'd0; //Set inputs

#6; //Go for 6 ns

a = 5’d2; //Set inputs

#15; //Go for 6 ns

$finish(); //End the simulation

end

initial begin

forever begin

$strobe("time: %4d, a: %d, b: %d, clk: %b", $time, a, b, clk);

#1;

end

end

endmodule

Result!
time: 0, a: 0, b: x, clk: 0
time: 1, a: 0, b: x, clk: 0
time: 2, a: 0, b: x, clk: 0
time: 3, a: 0, b: x, clk: 0
time: 4, a: 0, b: 0, clk: 1
time: 5, a: 0, b: 0, clk: 1
time: 6, a: 2, b: 0, clk: 1
time: 7, a: 2, b: 0, clk: 1
time: 8, a: 2, b: 0, clk: 0
time: 9, a: 2, b: 0, clk: 0
time: 10, a: 2, b: 0, clk: 0
time: 11, a: 2, b: 0, clk: 0
time: 12, a: 2, b: 2, clk: 1
time: 13, a: 2, b: 2, clk: 1
time: 14, a: 2, b: 2, clk: 1
time: 15, a: 2, b: 2, clk: 1
time: 16, a: 2, b: 2, clk: 0
time: 17, a: 2, b: 2, clk: 0
time: 18, a: 2, b: 2, clk: 0
time: 19, a: 2, b: 2, clk: 0
time: 20, a: 2, b: 2, clk: 1

Monitoring
`timescale 1ns/1ns

module reg_tester();

reg clk;

reg [4:0] a;

wire [4:0] b;

//Set the initial state of the clock

initial clk = 0;

//Every 4 timesteps (1ns) flip the clock

always #(4) clk <= ~clk;

//Instantiate the DUT

five_bit_flip_flop dut(.clk(clk), .d(a), .q(b));

initial begin

$dumpfile("dump.vcd"); //Setup file dump (for waveform

viewer)

$dumpvars; //Dump signals to dumpfile

a = 5'd0; //Set inputs

#6; //Go for 6 ns

a = 5'd2;

#15; //Go for 6 ns

$finish(); //End the simulation

end

initial begin

$monitor("time: %4d, a: %d, b: %d, clk: %b", $time, a, b,

clk);

end

endmodule

Results

time: 0, a: 0, b: x, clk: 0
time: 4, a: 0, b: 0, clk: 1
time: 6, a: 2, b: 0, clk: 1
time: 8, a: 2, b: 0, clk: 0
time: 12, a: 2, b: 2, clk: 1
time: 16, a: 2, b: 2, clk: 0
time: 20, a: 2, b: 2, clk: 1

Simulating in this class

• VCS
• Introduced in ASIC Lab 2
• Installed on Cory 125 Computers

• ModelSim
• Introduced in FPGA Lab3
• Installed on Cory 125 Computers
• Educational version (PE) available for Windows

• Vivado Simulator
• Introduced in FPGA Lab 3
• Installed on Cory 125 Computers
• Free version (WebPack) can be installed on Linux and Windows (Mac needs a VM)

• Install Vivado 2017.4 if you are in the FPGA Lab

• EDA Playground (https://www.edaplayground.com)
• Free Web Based Simulator
• Requires Registration

https://www.edaplayground.com/

