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Plan for Today

• Multipliers (including reminders from last lecture)
• Constant Multiplication
• Questions



Multipliers (From Last Week)

• Remember, the mechanics of multiplication in binary are generally 
the same as decimal multiplication (signed multiply requires a slight 
tweak).
• 2 Steps to Multiplication:
• Generation of partial products
• Adding partial products

• Making faster multipliers mostly involves changing how we deal with 
generating and adding the partial products



Unsigned Multiplication Example (From Last
Week)
4’b0011 (3)

* 4’b0110 (6) 
4’b0011 (3)

* 4’b0110 (6)
-------

0000
0011
0011

+ 0000
---------
00010010 (18)

Partial Products

• Partial Products can be generated in 
parallel



Number Representations
• Unsigned Binary

• Each bit place represents a different power of 2
• Ex: 11 in unsigned binary = 23 +21 + 20 = 8 +2 + 1 = 11

• Signed Binary – 2’s Complement
• Each bit place still represents a different power of 2, except the most significant bit has 

negative weight
• Converting to/from 2’s complement can be accomplished by performing a bitwise negation 

and adding 1.  Ex. -11 in 2’s complement = -25 + 24 + 22 + 20 = -32 + 16 + 4 + 1 = -11

25 24 23 22 21 20

32 16 8 4 2 1
0 0 1 0 1 1

-25 24 23 22 21 20

-32 16 8 4 2 1
1 1 0 1 0 1



Signed Multiplication Example

4’b0011 (3)
* 4’b1100 (-4) 

4’b0011 (3)
* 4’b1100 (-4)
-------

+ 00000000
+ 0000000
+ 000011
- 00011
---------
+ 00001100
+ 11100111+1
---------
+ 00001100
+ 11101000
---------
11110100 (-12)

• In 2’s Complement, the MSB is given 
negative weight

• Need to sign extend numbers when
writing partial products

• Need to subtract partial product for 
MSB

• Carry bit of additions is discarded



Signed Multiplication Example

4’b1100 (-4)
* 4’b0011  (3)

4’b1100 (-4)
* 4’b0011  (3)
-------

+ 11111100
+ 1111100
+ 000000
- 00000
---------
+ 11110100
+ 11111111+1
---------
+ 11110100
+ 00000000
---------
11110100 (-12)

• In 2’s Complement, the MSB is given 
negative weight

• Need to sign extend numbers when
writing partial products

• Need to subtract partial product for 
MSB

• Carry bit of additions is discarded



Signed Multiplication Example

4’b1100 (-4)
* 4’b1101 (-3)

4’b1100 (-4)
* 4’b1101 (-3)
-------

+  11111100
+  0000000
+  111100
- 11100
---------

+  11101100
+  00011111+1
---------

+  11101100
+  00100000
---------

(1)00001100 (12)

• In 2’s Complement, the MSB is given 
negative weight

• Need to sign extend numbers when
writing partial products

• Need to subtract partial product for 
MSB

• Carry bit of additions is discarded



Signed Multiplication Example

4’b0100 (4)
* 4’b0011 (3)

4’b0100 (4)
* 4’b0011 (3)
-------

+  00000100
+  0000100
+  000000
- 00000
---------

+  00001100
+  11111111+1
---------

+  00001100
+  00000000
---------
00001100 (12)

• In 2’s Complement, the MSB is given 
negative weight

• Need to sign extend numbers when
writing partial products

• Need to subtract partial product for 
MSB

• Carry bit of additions is discarded



Accelerating Multiplication



Accelerating the Addition of Partial Products

• Let’s look at an (unsigned) array 
multiplier
• The products can be computed in 

parallel but the carry chain when 
adding partial products is limiting the 
speed
• How do we improve performance 

without having a large increase in 
hardware?
• We could implement each adder as a

parallel prefix or a carry-lookahead adder
• However, remember that these adders 

require more logic than a simple carry 
ripple adder

Figures from Lecture Slides



One Solution: Carry Save Addition
• When we generate a carry in a given 

column of an addition, we add it to the 2 
values in the next column.
• This addition may in turn generate its own 

carry
• If adding carries is just like another 

addition, can we delay adding the carry 
bits until later?
• Yes, so long as we remember what the carry 

bits need to be added
• This is the basis of the carry save adder:

• Takes in a, b, and carry_in (multi-bit)
• Produces a sum and carry_out (multi-bit)
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Using Carry Save Addition in Multipliers

• Carry now propagates down 
each column.
• Carry ripple across rows is

eliminated in the array
• Still need to handle carries at the 

end with a fast adder

Figure from Lecture Slides



Using Carry Save Addition

• Remember, sums are associative 
and communitive.
• We can add the partial products 

in a tree structure using carry 
save adders!
• Now have a number of layers that

scales logarithmically!
• This is the basis of the Wallace 

Tree Multiplier
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Radix and Multiplication

• Binary arithmetic has some advantages
• Partial product generation is just a series of AND gates (including sign 

extension)

• However, there are also disadvantages
• There is a partial product for each bit of the multiplier
• That leads to a lot of partial products (a lot of additions)

• Ex. 3*4
• single partial product in base 10
• 4 partial products in base 2.

• Why don’t we consider a larger radix?



Radix 4 Multiplication

• Let’s consider 2 bits at a time
• Halve the number of partial products we generate

• Radix 4 multiplication A*B
• Partial Product Shift By 2 bits each time

• Recall: Multiplications by powers of 2 are left shifts
• Can we use this property?

B Digit Partial Product Partial Product (Rewritten)
0 0*A 0

1 1*A A

2 2*A 4*A - 2*A

3 3*A 4*A - A



Booth Recoding

• Uses radix 4 arithmetic
• Modification: Partial Products for B==2 and 

B==3 can be separated into 4*A – {2, 1}A
• 4*A can be implemented as a shift to the left 

by 2
• 2*A can be implemented as a shift to the left

by 1
• Recall that we are doing radix 4 

multiplication, we shift left by 2 positions for 
the next partial product

• Therefore, any 4*A term can be handled in 
the next partial product!
• To do this, the multiplier needs to look at 3 

(rather than just 2) bits.  The extra bit is the MSB 
of the previous 

B Digit Partial 
Product

Partial Product 
(Rewritten)

0 0*A 0

1 1*A A

2 2*A 4*A - 2*A

3 3*A 4*A - A



Booth Recoding
Bi+1 Bi Bi-1 Action Comment
0 0 0 Add 0
0 0 1 Add A Includes +4*A from previous radix 4 digit = +A in this 

position due to left shift by 2
0 1 0 Add A
0 1 1 Add 2*A Includes +4*A from previous round (+A in this 

position).  *2 is implemented as a left shift by 1
1 0 0 Sub 2*A 4*A will be added in when handling next radix 4 digit.  

*2 is implemented as a left shift by 1
1 0 1 Sub A 4*A will be added in when handling next radix 4 digit.  

Includes +4*A from previous radix 4 digit (+A in this 
position)

1 1 0 Sub A 4*A will be added in when handling next radix 4 digit.
1 1 1 Add 0 4*A will be added in when handling next radix 4 digit. 

Includes +4*A from previous radix 4 digit (+A in this 
position) 

B Digit Partial 
Product

Partial 
Product 
(Rewritten)

0 0*A 0
1 1*A A
2 2*A 4*A - 2*A
3 3*A 4*A - A



Booth Recoding Example (Unsigned)
• Example: 6*4
• B-1 = 0

Bi+1 Bi Bi-1 Action
0 0 0 Add 0
0 0 1 Add A
0 1 0 Add A
0 1 1 Add 2*A
1 0 0 Sub 2*A
1 0 1 Sub A
1 1 0 Sub A
1 1 1 Add 0

4’b0110  (6)
* 4’b0111 (7)
-------

- 0110 ( Sub A)
+   01100   (Add 2A)
+  0000     ( Add 0)
---------

+  11111010 ( Sub A)
+   01100   (Add 2A)
+  0000     ( Add 0)
---------

(1)00101010 (42)



Additional Methods

• Pipelining! 
• Used in many high performance 

systems
• Upside: Increased throughput
• Downside: Increased latency
• Good if you have many 

independent multiplications to 
perform and latency is acceptable

Figure from Lecture Slides



Signed Multiplication Tricks

• 2 things we need to do for signed multiplication:
• Sign extend partial products
• Subtract last partial products

• How can we simplify matters?
• Sign extension requires additional logic
• Add constants that allows us to eliminate the sign extension logic
• Merge with the constant that is added when negating the last partial product



Trick with Sign Extension

• Ex. Sign Extend 1100 to 8 bits:
11111100
• Add 1000
• Causes a carry  to ripple

11111100
+  00001000
-----------
(1)00000100
• Results in the original input with the 

MSB Inverted

• Ex. Sign Extend 0100 to 8 bits:
00000100
• Add 1000
• No carry ripple

00000100
+ 00001000
-----------

00001100
• Results in the original input with the 

MSB inverted
• Allows us to eliminate the 4 AND gates 

required for sign extension
• Need an inverter and to subtract the 

constant later



Application of Sign Extension Trick
X3 X2 X1 X0

* Y3 Y2 Y1 Y0
--------------------

+ X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
-----------------------------------------
+ X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3    1    1    1

1
-----------------------------------------

Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

X3 X2 X1 X0
* Y3 Y2 Y1 Y0

--------------------
+ X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+                        1    0    0    0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+                   1    0    0    0    0
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+              1    0    0    0    0    0
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+                        1 (+1 from Neg)
+         1    0    0    0    0    0    0
- 1    1    1    1    0    0    0
-----------------------------------------

Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

1) Invert Last Partial Product (From Lecture Slides) 2) Add Constants (From Lecture Slides)



Application of Sign Extension Trick
X3 X2 X1 X0

* Y3 Y2 Y1 Y0

--------------------
+ X3Y0 X2Y0 X1Y0 X0Y0

+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

+                        1 (+1 from Neg)
- 1    1    1    1    0    0    0

-----------------------------------------
Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

3) Add Constants (From Lecture Slides)
X3 X2 X1 X0

* Y3 Y2 Y1 Y0

--------------------
+ X3Y0 X2Y0 X1Y0 X0Y0

+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

+                        1 (+1 from Neg)
+ 1    0 0 0 1    0    0    0

-----------------------------------------
Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

4) Negate Last Term (From Lecture Slides)



Application of Sign Extension Trick
5) Add Constants (From Lecture Slides)

X3 X2 X1 X0
* Y3 Y2 Y1 Y0

--------------------
+ X3Y0 X2Y0 X1Y0 X0Y0

+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

+    1    0 0 1    0 0    0    0
-----------------------------------------

Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0

• Can be implemented with limited modifications to the 
unsigned multiplier!

• Requires passing some constants to full adders and
inverting some terms

Figure from Lecture Slides



Constant Coefficient Multipliers



Multiplying by a Constant

• Observation: Every number can be factored into a sum of powers of 2
• This is exactly what we do when we write a number in binary!

• Ex. 11 = 23 +21 + 20 = 8 +2 + 1
• Can we leverage this to help us multiply by constants?
• Yes!

• Use the distributive property
• Ex. A*11 = A*(23 +21 + 20) = A*23  + A*21 + A*20

• Use the fact that power of 2 multiplies are shifts
• Ex. A*11 = A<<3 + A<<1 + A<<0
• Turned a multiply into shifts by fixed amounts and additions



Extending to Use Subtraction

• This concept can be extended to use subtraction
• Ex. 15 = 23 + 22 + 21 + 20 = 24 - 20 =16 – 1
• A*15 = A*24 –A*20 = A<<4 – A<<0
• This is denoted by drawing a line over digits with negative weight
• Ex. 15 = 001111 = 010001



Canonical Signed Digit

• CSD Represents Numbers using 1, 0, 1 digits
• Minimizes the number of nonzero digits

• Minimizes the number of additions needed when multiplying by a constant
Procedure (2 Passes):
1. Replace any occurrence of 2 or more 1’s (01…10) with 10…10
2. Replace any occurrence of 2 or more 1’s (01…10) with 10…10 

and Replace 0110 with 0010 
and Replace 0110 with 0010

Ex (From Lecture).
0010111 = 23
0011001 (Pass 1)
0101001 (Pass 2) = 32 – 8 – 1


