EECS151/251A Discussion 12

Christopher Yarp

Apr. 26, 2019

Plan for Today

- Multipliers (including reminders from last lecture)
- Constant Multiplication
- Questions

Multipliers (From Last Week)

- Remember, the mechanics of multiplication in binary are generally the same as decimal multiplication (signed multiply requires a slight tweak).
- 2 Steps to Multiplication:
 - Generation of partial products
 - Adding partial products
- Making faster multipliers mostly involves changing how we deal with generating and adding the partial products

Unsigned Multiplication Example (From Last Week)

- 4'b0011 (3)
- * 4'b0110 (6)

• Partial Products can be generated in parallel

Number Representations

- Unsigned Binary
 - Each bit place represents a different power of 2
 - Ex: 11 in unsigned binary = $2^3 + 2^1 + 2^0 = 8 + 2 + 1 = 11$

2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
32	16	8	4	2	1
0	0	1	0	1	1

- Signed Binary 2's Complement
 - Each bit place still represents a different power of 2, except the most significant bit has negative weight
 - Converting to/from 2's complement can be accomplished by performing a bitwise negation and adding 1. Ex. -11 in 2's complement = -2⁵ + 2⁴ + 2² + 2⁰ = -32 + 16 + 4 + 1 = -11

-2 ⁵	24	2 ³	2 ²	21	2 ⁰
-32	16	8	4	2	1
1	1	0	1	0	1

- 4'b0011 (3)
- * 4'b1100 (-4)

- In 2's Complement, the MSB is given negative weight
- Need to sign extend numbers when writing partial products
- Need to subtract partial product for MSB
- Carry bit of additions is discarded

- 4'b0011 (3)
- * 4'b1100 (-4)
- + 0000000
- + 0000000
- + 000011
- 00011
- + 00001100
- + 11100111+1
- + 00001100
- + 11101000
 - 11110100 (-12)

- 4'b1100 (-4)
- * 4'b0011 (3)
- In 2's Complement, the MSB is given negative weight
- Need to sign extend numbers when writing partial products
- Need to subtract partial product for MSB
- Carry bit of additions is discarded

- 4'b1100 (-4)
- * 4'b0011 (3)
- + 11111100
- + 1111100
- + 000000
- 00000
- + 11110100
- + 11111111+1
- + 11110100
- + 0000000
 - 11110100 (-12)

- 4'b1100 (-4)
- * 4'b1101 (-3)
- In 2's Complement, the MSB is given negative weight
- Need to sign extend numbers when writing partial products
- Need to subtract partial product for MSB
- Carry bit of additions is discarded

- 4'b1100 (-4)
- * 4'b1101 (-3)
- + 11111100
- + 0000000
- + 111100
- 11100
- + 11101100
- + 00011111+1
- + 11101100
- + 00100000
- (1)00001100 (12)

- 4'b0100 (4)
- * 4'b0011 (3)
- In 2's Complement, the MSB is given negative weight
- Need to sign extend numbers when writing partial products
- Need to subtract partial product for MSB
- Carry bit of additions is discarded

- 4'b0100 (4)
- * 4'b0011 (3)
- + 00000100
- + 0000100
- + 000000
- 00000
- + 00001100
- + 11111111+1
- + 00001100
- + 0000000
 - 00001100 (12)

Accelerating Multiplication

Accelerating the Addition of Partial Products

- Let's look at an (unsigned) array multiplier
- The products can be computed in parallel but the carry chain when adding partial products is limiting the speed
- How do we improve performance without having a large increase in hardware?
 - We could implement each adder as a parallel prefix or a carry-lookahead adder
 - However, remember that these adders require more logic than a simple carry ripple adder

One Solution: Carry Save Addition

- When we generate a carry in a given column of an addition, we add it to the 2 values in the next column.
 - This addition may in turn generate its own carry
- If adding carries is just like another addition, can we delay adding the carry bits until later?
 - Yes, so long as we remember what the carry bits need to be added
- This is the basis of the carry save adder:
 - Takes in a, b, and carry_in (multi-bit)
 - Produces a sum and carry_out (multi-bit)

Using Carry Save Addition in Multipliers

- Carry now propagates down each column.
 - Carry ripple across rows is eliminated in the array
- Still need to handle carries at the end with a fast adder

Figure from Lecture Slides

Using Carry Save Addition

- Remember, sums are associative and communitive.
- We can add the partial products in a tree structure using carry save adders!
 - Now have a number of layers that scales logarithmically!
- This is the basis of the Wallace Tree Multiplier

Radix and Multiplication

- Binary arithmetic has some advantages
 - Partial product generation is just a series of AND gates (including sign extension)
- However, there are also disadvantages
 - There is a partial product for each bit of the multiplier
 - That leads to a lot of partial products (a lot of additions)
- Ex. 3*4
 - single partial product in base 10
 - 4 partial products in base 2.
- Why don't we consider a larger radix?

Radix 4 Multiplication

- Let's consider 2 bits at a time
 - Halve the number of partial products we generate
- Radix 4 multiplication A*B
 - Partial Product Shift By 2 bits each time

B Digit	Partial Product	Partial Product (Rewritten)
0	0*A	0
1	1*A	A
2	2*A	4*A - 2*A
3	3*A	4*A - A

- Recall: Multiplications by powers of 2 are left shifts
- Can we use this property?

Booth Recoding

- Uses radix 4 arithmetic
- Modification: Partial Products for B==2 and B==3 can be separated into $4*A \{2, 1\}A$
- 4*A can be implemented as a shift to the left by 2
- 2*A can be implemented as a shift to the left by 1
- Recall that we are doing radix 4 multiplication, we shift left by 2 positions for the next partial product
- Therefore, any 4*A term can be handled in the next partial product!
 - To do this, the multiplier needs to look at 3 (rather than just 2) bits. The extra bit is the MSB of the previous

B Digit	Partial Product	Partial Product (Rewritten)
0	0*A	0
1	1*A	А
2	2*A	4*A - 2*A
3	3*A	4*A - A

Booth Recoding

B _{i+1}	B _i	B _{i-1}	Action	Comment
0	0	0	Add 0	
0	0	1	Add A	Includes +4*A from previous radix 4 digit = +A in this position due to left shift by 2
0	1	0	Add A	
0	1	1	Add 2*A	Includes +4*A from previous round (+A in this position). *2 is implemented as a left shift by 1
1	0	0	Sub 2*A	4*A will be added in when handling next radix 4 digit.*2 is implemented as a left shift by 1
1	0	1	Sub A	4*A will be added in when handling next radix 4 digit. Includes +4*A from previous radix 4 digit (+A in this position)
1	1	0	Sub A	4*A will be added in when handling next radix 4 digit.
1	1	1	Add 0	4*A will be added in when handling next radix 4 digit. Includes +4*A from previous radix 4 digit (+A in this position)

B Digit	Partial Product	Partial Product (Rewritten)
0	0*A	0
1	1*A	A
2	2*A	4*A - 2*A
3	3*A	4*A - A

Booth Recoding Example (Unsigned)

• Example: 6*4

• B₋₁ = 0

(1)00101010 (42)

Additional Methods

- Pipelining!
 - Used in many high performance systems
 - Upside: Increased throughput
 - Downside: Increased latency
 - Good if you have many independent multiplications to perform and latency is acceptable

Figure from Lecture Slides

Signed Multiplication Tricks

- 2 things we need to do for signed multiplication:
 - Sign extend partial products
 - Subtract last partial products
- How can we simplify matters?
 - Sign extension requires additional logic
 - Add constants that allows us to eliminate the sign extension logic
 - Merge with the constant that is added when negating the last partial product

Trick with Sign Extension

- Ex. Sign Extend 1100 to 8 bits: 11111100
- Add 1000
- Causes a carry to ripple 11111100
 - + 00001000
 - (1)00000100
- Results in the original input with the MSB Inverted

- Ex. Sign Extend 0100 to 8 bits: 00000100
- Add 1000
- No carry ripple 00000100
 + 00001000
 00001100
- Results in the original input with the MSB inverted
- Allows us to eliminate the 4 AND gates required for sign extension
- Need an inverter and to subtract the constant later

Application of Sign Extension Trick

2) Add Constants (From Lecture Slides) X3 X2 X1 X0 * Y3 Y2 Y1 Y0 + X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 0 0 0 + 1 + X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 1 0 0 0 0 ++ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y20 0 0 0 0 + + X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 1 (+1 from Neg) +1 0 0 0 0 0 0 + 1 1 1 1 0 0 0 75 77 Z6 74 73 72 71 Z0

1) Invert Last Partial Product (From Lecture Slides) X3 X2 X1 X0 * Y3 Y2 Y1 Y0 + X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 + X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 + X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 - X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 + X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 + X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 + X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 + X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 1 1 1 1 77 Z6 **Z**3 71 Z0 Z5 Z4 Z2

Application of Sign Extension Trick

Add Constants (From Lecture Slides)								4) N	legate	e Last	Term (F	rom Le	ecture S	Slides)			
						X3	X2 X	1 X0							X	3 X2 X	1 X0
						* Y 3	Y2 Y	1 Y0							* Y	8 Y2 Y	1 Y0
Т					<u>7370</u>	x2VQ Y	 X1V0	 XQVQ	т					<u>7370</u>	 X2VQ	 	
т					V210	AZ10 /	VTIO 1	NOTO	т					V210	7210	VIIO	NOTO
+				X3Y1	X2Y1	X1Y1 X	X0Y1		+				X3Y1	X2Y1	X1Y1	X0Y1	
+			X3Y2	X2Y2	X1Y2	X0Y2			+			X3Y2	X2Y2	X1Y2	X0Y2		
+		X3Y3	X2Y3	X1Y3	X0Y3				+		X3Y3	X2Y3	X1Y3	X0Y3			
+					1	(+1 f	rom N	eg)	+					1	(+1 1	From N	eg)
-		1	1	1	1	0	0	0	+	1	0	0	0	1	0	0	0
	Z7	Z6	Z5	Z4	Z3	Z2	 Z1	 Z0		Z7	Z6	Z5	Z4	Z3	 Z2	 Z1	 Z0

Application of Sign Extension Trick

5) Add Constants (From Lecture Slides)

- Can be implemented with limited modifications to the unsigned multiplier!
- Requires passing some constants to full adders and inverting some terms

Figure from Lecture Slides

Constant Coefficient Multipliers

Multiplying by a Constant

- Observation: Every number can be factored into a sum of powers of 2
- This is exactly what we do when we write a number in binary!
 - Ex. $11 = 2^3 + 2^1 + 2^0 = 8 + 2 + 1$
- Can we leverage this to help us multiply by constants?
- Yes!
- Use the distributive property
 - Ex. $A^*11 = A^*(2^3 + 2^1 + 2^0) = A^*2^3 + A^*2^1 + A^*2^0$
- Use the fact that power of 2 multiplies are shifts
 - Ex. A*11 = A<<3 + A<<1 + A<<0
 - Turned a multiply into shifts by fixed amounts and additions

Extending to Use Subtraction

- This concept can be extended to use subtraction
- Ex. $15 = 2^3 + 2^2 + 2^1 + 2^0 = 2^4 2^0 = 16 1$
- $A*15 = A*2^4 A*2^0 = A << 4 A << 0$
- This is denoted by drawing a line over digits with negative weight
- Ex. 15 = 001111 = 010001

Canonical Signed Digit

- CSD Represents Numbers using 1, 0, 1 digits
- Minimizes the number of nonzero digits
 - Minimizes the number of additions needed when multiplying by a constant

Procedure (2 Passes):

- 1. Replace any occurrence of 2 or more 1's (01...10) with $10...\overline{1}0$
- 2. Replace any occurrence of 2 or more 1's (01...10) with 10...10 and Replace 0110 with 0010 and Replace 0110 with 0010

Ex (From Lecture).

0010111 = 23 0011001 (Pass 1) 0101001 (Pass 2) = 32 - 8 - 1