
EECS151/251A Discussion 12
Christopher Yarp

Apr. 26, 2019

Plan for Today

• Multipliers (including reminders from last lecture)
• Constant Multiplication
• Questions

Multipliers (From Last Week)

• Remember, the mechanics of multiplication in binary are generally
the same as decimal multiplication (signed multiply requires a slight
tweak).
• 2 Steps to Multiplication:
• Generation of partial products
• Adding partial products

• Making faster multipliers mostly involves changing how we deal with
generating and adding the partial products

Unsigned Multiplication Example (From Last
Week)
4’b0011 (3)

* 4’b0110 (6)
4’b0011 (3)

* 4’b0110 (6)

0000
0011
0011

+ 0000

00010010 (18)

Partial Products

• Partial Products can be generated in
parallel

Number Representations
• Unsigned Binary

• Each bit place represents a different power of 2
• Ex: 11 in unsigned binary = 23 +21 + 20 = 8 +2 + 1 = 11

• Signed Binary – 2’s Complement
• Each bit place still represents a different power of 2, except the most significant bit has

negative weight
• Converting to/from 2’s complement can be accomplished by performing a bitwise negation

and adding 1. Ex. -11 in 2’s complement = -25 + 24 + 22 + 20 = -32 + 16 + 4 + 1 = -11

25 24 23 22 21 20

32 16 8 4 2 1
0 0 1 0 1 1

-25 24 23 22 21 20

-32 16 8 4 2 1
1 1 0 1 0 1

Signed Multiplication Example

4’b0011 (3)
* 4’b1100 (-4)

4’b0011 (3)
* 4’b1100 (-4)

+ 00000000
+ 0000000
+ 000011
- 00011

+ 00001100
+ 11100111+1

+ 00001100
+ 11101000

11110100 (-12)

• In 2’s Complement, the MSB is given
negative weight

• Need to sign extend numbers when
writing partial products

• Need to subtract partial product for
MSB

• Carry bit of additions is discarded

Signed Multiplication Example

4’b1100 (-4)
* 4’b0011 (3)

4’b1100 (-4)
* 4’b0011 (3)

+ 11111100
+ 1111100
+ 000000
- 00000

+ 11110100
+ 11111111+1

+ 11110100
+ 00000000

11110100 (-12)

• In 2’s Complement, the MSB is given
negative weight

• Need to sign extend numbers when
writing partial products

• Need to subtract partial product for
MSB

• Carry bit of additions is discarded

Signed Multiplication Example

4’b1100 (-4)
* 4’b1101 (-3)

4’b1100 (-4)
* 4’b1101 (-3)

+ 11111100
+ 0000000
+ 111100
- 11100

+ 11101100
+ 00011111+1

+ 11101100
+ 00100000

(1)00001100 (12)

• In 2’s Complement, the MSB is given
negative weight

• Need to sign extend numbers when
writing partial products

• Need to subtract partial product for
MSB

• Carry bit of additions is discarded

Signed Multiplication Example

4’b0100 (4)
* 4’b0011 (3)

4’b0100 (4)
* 4’b0011 (3)

+ 00000100
+ 0000100
+ 000000
- 00000

+ 00001100
+ 11111111+1

+ 00001100
+ 00000000

00001100 (12)

• In 2’s Complement, the MSB is given
negative weight

• Need to sign extend numbers when
writing partial products

• Need to subtract partial product for
MSB

• Carry bit of additions is discarded

Accelerating Multiplication

Accelerating the Addition of Partial Products

• Let’s look at an (unsigned) array
multiplier
• The products can be computed in

parallel but the carry chain when
adding partial products is limiting the
speed
• How do we improve performance

without having a large increase in
hardware?
• We could implement each adder as a

parallel prefix or a carry-lookahead adder
• However, remember that these adders

require more logic than a simple carry
ripple adder

Figures from Lecture Slides

One Solution: Carry Save Addition
• When we generate a carry in a given

column of an addition, we add it to the 2
values in the next column.
• This addition may in turn generate its own

carry
• If adding carries is just like another

addition, can we delay adding the carry
bits until later?
• Yes, so long as we remember what the carry

bits need to be added
• This is the basis of the carry save adder:

• Takes in a, b, and carry_in (multi-bit)
• Produces a sum and carry_out (multi-bit)

FA
a b ci

co s
FA

a b ci

co s
FA

a b ci

co s
FA

a b ci

co s

a[3]
b[3]

a[2]
b[2]

a[1]
b[1]

a[0]
b[0]

s[3] s[2] s[1] s[0]co[4]

ci[0]ci[1]ci[2]ci[3]

co[3] co[2] co[1] co[0]

0

CSA
a b ci

cos

n n n

n+1n

Using Carry Save Addition in Multipliers

• Carry now propagates down
each column.
• Carry ripple across rows is

eliminated in the array
• Still need to handle carries at the

end with a fast adder

Figure from Lecture Slides

Using Carry Save Addition

• Remember, sums are associative
and communitive.
• We can add the partial products

in a tree structure using carry
save adders!
• Now have a number of layers that

scales logarithmically!
• This is the basis of the Wallace

Tree Multiplier

CSA
a b ci

cos

a
b

c

CSA
a b ci

cos

d
e

f

CSA
a b ci

cos

CSA
a b ci

cos

ADD
a b

s

Radix and Multiplication

• Binary arithmetic has some advantages
• Partial product generation is just a series of AND gates (including sign

extension)

• However, there are also disadvantages
• There is a partial product for each bit of the multiplier
• That leads to a lot of partial products (a lot of additions)

• Ex. 3*4
• single partial product in base 10
• 4 partial products in base 2.

• Why don’t we consider a larger radix?

Radix 4 Multiplication

• Let’s consider 2 bits at a time
• Halve the number of partial products we generate

• Radix 4 multiplication A*B
• Partial Product Shift By 2 bits each time

• Recall: Multiplications by powers of 2 are left shifts
• Can we use this property?

B Digit Partial Product Partial Product (Rewritten)
0 0*A 0

1 1*A A

2 2*A 4*A - 2*A

3 3*A 4*A - A

Booth Recoding

• Uses radix 4 arithmetic
• Modification: Partial Products for B==2 and

B==3 can be separated into 4*A – {2, 1}A
• 4*A can be implemented as a shift to the left

by 2
• 2*A can be implemented as a shift to the left

by 1
• Recall that we are doing radix 4

multiplication, we shift left by 2 positions for
the next partial product

• Therefore, any 4*A term can be handled in
the next partial product!
• To do this, the multiplier needs to look at 3

(rather than just 2) bits. The extra bit is the MSB
of the previous

B Digit Partial
Product

Partial Product
(Rewritten)

0 0*A 0

1 1*A A

2 2*A 4*A - 2*A

3 3*A 4*A - A

Booth Recoding
Bi+1 Bi Bi-1 Action Comment
0 0 0 Add 0
0 0 1 Add A Includes +4*A from previous radix 4 digit = +A in this

position due to left shift by 2
0 1 0 Add A
0 1 1 Add 2*A Includes +4*A from previous round (+A in this

position). *2 is implemented as a left shift by 1
1 0 0 Sub 2*A 4*A will be added in when handling next radix 4 digit.

*2 is implemented as a left shift by 1
1 0 1 Sub A 4*A will be added in when handling next radix 4 digit.

Includes +4*A from previous radix 4 digit (+A in this
position)

1 1 0 Sub A 4*A will be added in when handling next radix 4 digit.
1 1 1 Add 0 4*A will be added in when handling next radix 4 digit.

Includes +4*A from previous radix 4 digit (+A in this
position)

B Digit Partial
Product

Partial
Product
(Rewritten)

0 0*A 0
1 1*A A
2 2*A 4*A - 2*A
3 3*A 4*A - A

Booth Recoding Example (Unsigned)
• Example: 6*4
• B-1 = 0

Bi+1 Bi Bi-1 Action
0 0 0 Add 0
0 0 1 Add A
0 1 0 Add A
0 1 1 Add 2*A
1 0 0 Sub 2*A
1 0 1 Sub A
1 1 0 Sub A
1 1 1 Add 0

4’b0110 (6)
* 4’b0111 (7)

- 0110 (Sub A)
+ 01100 (Add 2A)
+ 0000 (Add 0)

+ 11111010 (Sub A)
+ 01100 (Add 2A)
+ 0000 (Add 0)

(1)00101010 (42)

Additional Methods

• Pipelining!
• Used in many high performance

systems
• Upside: Increased throughput
• Downside: Increased latency
• Good if you have many

independent multiplications to
perform and latency is acceptable

Figure from Lecture Slides

Signed Multiplication Tricks

• 2 things we need to do for signed multiplication:
• Sign extend partial products
• Subtract last partial products

• How can we simplify matters?
• Sign extension requires additional logic
• Add constants that allows us to eliminate the sign extension logic
• Merge with the constant that is added when negating the last partial product

Trick with Sign Extension

• Ex. Sign Extend 1100 to 8 bits:
11111100
• Add 1000
• Causes a carry to ripple

11111100
+ 00001000

(1)00000100
• Results in the original input with the

MSB Inverted

• Ex. Sign Extend 0100 to 8 bits:
00000100
• Add 1000
• No carry ripple

00000100
+ 00001000

00001100
• Results in the original input with the

MSB inverted
• Allows us to eliminate the 4 AND gates

required for sign extension
• Need an inverter and to subtract the

constant later

Application of Sign Extension Trick
X3 X2 X1 X0

* Y3 Y2 Y1 Y0

+ X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

+ X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 1 1 1

1

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

X3 X2 X1 X0
* Y3 Y2 Y1 Y0

+ X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ 1 0 0 0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ 1 0 0 0 0
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ 1 0 0 0 0 0
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+ 1 (+1 from Neg)
+ 1 0 0 0 0 0 0
- 1 1 1 1 0 0 0

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

1) Invert Last Partial Product (From Lecture Slides) 2) Add Constants (From Lecture Slides)

Application of Sign Extension Trick
X3 X2 X1 X0

* Y3 Y2 Y1 Y0

+ X3Y0 X2Y0 X1Y0 X0Y0

+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

+ 1 (+1 from Neg)
- 1 1 1 1 0 0 0

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

3) Add Constants (From Lecture Slides)
X3 X2 X1 X0

* Y3 Y2 Y1 Y0

+ X3Y0 X2Y0 X1Y0 X0Y0

+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

+ 1 (+1 from Neg)
+ 1 0 0 0 1 0 0 0

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

4) Negate Last Term (From Lecture Slides)

Application of Sign Extension Trick
5) Add Constants (From Lecture Slides)

X3 X2 X1 X0
* Y3 Y2 Y1 Y0

+ X3Y0 X2Y0 X1Y0 X0Y0

+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3

+ 1 0 0 1 0 0 0 0

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

• Can be implemented with limited modifications to the
unsigned multiplier!

• Requires passing some constants to full adders and
inverting some terms

Figure from Lecture Slides

Constant Coefficient Multipliers

Multiplying by a Constant

• Observation: Every number can be factored into a sum of powers of 2
• This is exactly what we do when we write a number in binary!

• Ex. 11 = 23 +21 + 20 = 8 +2 + 1
• Can we leverage this to help us multiply by constants?
• Yes!

• Use the distributive property
• Ex. A*11 = A*(23 +21 + 20) = A*23 + A*21 + A*20

• Use the fact that power of 2 multiplies are shifts
• Ex. A*11 = A<<3 + A<<1 + A<<0
• Turned a multiply into shifts by fixed amounts and additions

Extending to Use Subtraction

• This concept can be extended to use subtraction
• Ex. 15 = 23 + 22 + 21 + 20 = 24 - 20 =16 – 1
• A*15 = A*24 –A*20 = A<<4 – A<<0
• This is denoted by drawing a line over digits with negative weight
• Ex. 15 = 001111 = 010001

Canonical Signed Digit

• CSD Represents Numbers using 1, 0, 1 digits
• Minimizes the number of nonzero digits

• Minimizes the number of additions needed when multiplying by a constant
Procedure (2 Passes):
1. Replace any occurrence of 2 or more 1’s (01…10) with 10…10
2. Replace any occurrence of 2 or more 1’s (01…10) with 10…10

and Replace 0110 with 0010
and Replace 0110 with 0010

Ex (From Lecture).
0010111 = 23
0011001 (Pass 1)
0101001 (Pass 2) = 32 – 8 – 1

