EECS151/251A Discussion 12

Christopher Yarp
Apr. 26, 2019

Plan for Today

- Multipliers (including reminders from last lecture)
- Constant Multiplication
- Questions

Multipliers (From Last Week)

- Remember, the mechanics of multiplication in binary are generally the same as decimal multiplication (signed multiply requires a slight tweak).
- 2 Steps to Multiplication:
- Generation of partial products
- Adding partial products
- Making faster multipliers mostly involves changing how we deal with generating and adding the partial products

Unsigned Multiplication Example (From Last Week)

$4^{\prime} b 0011(3)$

* 4’b0110 (6)
- Partial Products can be generated in parallel

```
    4'b0011 (3)
* 4'b0110 (6)
```


00010010 (18)

Number Representations

- Unsigned Binary
- Each bit place represents a different power of 2
- Ex: 11 in unsigned binary $=2^{3}+2^{1}+2^{0}=8+2+1=11$

2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
32	16	8	4	2	1
0	0	1	0	1	1

- Signed Binary - 2's Complement
- Each bit place still represents a different power of 2, except the most significant bit has negative weight
- Converting to/from 2's complement can be accomplished by performing a bitwise negation and adding 1. Ex. -11 in 2^{\prime} s complement $=-2^{5}+2^{4}+2^{2}+2^{0}=-32+16+4+1=-11$

-2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
-32	16	8	4	2	1
1	1	0	1	0	

Signed Multiplication Example

> 4’b0011 (3)
> * 4'b1100 (-4)
4’b0011 (3)

* 4’b1100 (-4)
- In 2's Complement, the MSB is given negative weight
- Need to sign extend numbers when writing partial products
- Need to subtract partial product for MSB
- Carry bit of additions is discarded
$+00000000$
+ 0000000
+ 000011
- 00011
$+00001100$
+ 11100111+1
$+00001100$
+ 11101000
$11110100(-12)$

Signed Multiplication Example

$$
\begin{array}{r}
\text { 4’b1100 (-4) } \\
\text { * 4’b0011 (3) }
\end{array}
$$

4'b1100 (-4)

* 4'b0011 (3)

$$
+11111100
$$

$$
+1111100
$$

+ 000000
- 00000
- In 2's Complement, the MSB is given negative weight
- Need to sign extend numbers when writing partial products
- Need to subtract partial product for MSB

$$
\begin{aligned}
& +11110100 \\
& +11111111+1
\end{aligned}
$$

$+11110100$
$+00000000$

- Carry bit of additions is discarded

Signed Multiplication Example

Signed Multiplication Example

Accelerating Multiplication

Accelerating the Addition of Partial Products

- Let's look at an (unsigned) array multiplier
- The products can be computed in parallel but the carry chain when adding partial products is limiting the speed
- How do we improve performance without having a large increase in hardware?
- We could implement each adder as a parallel prefix or a carry-lookahead adder
- However, remember that these adders require more logic than a simple carry ripple adder

One Solution: Carry Save Addition

- When we generate a carry in a given column of an addition, we add it to the 2 values in the next column.
- This addition may in turn generate its own carry
- If adding carries is just like another
 addition, can we delay adding the carry bits until later?
- Yes, so long as we remember what the carry bits need to be added
- This is the basis of the carry save adder:
- Takes in a, b, and carry_in (multi-bit)
- Produces a sum and carry_out (multi-bit)

Using Carry Save Addition in Multipliers

- Carry now propagates down each column.
- Carry ripple across rows is eliminated in the array
- Still need to handle carries at the end with a fast adder

Figure from Lecture Slides

Using Carry Save Addition

- Remember, sums are associative and communitive.
- We can add the partial products in a tree structure using carry save adders!
- Now have a number of layers that scales logarithmically!
- This is the basis of the Wallace Tree Multiplier

Radix and Multiplication

- Binary arithmetic has some advantages
- Partial product generation is just a series of AND gates (including sign extension)
- However, there are also disadvantages
- There is a partial product for each bit of the multiplier
- That leads to a lot of partial products (a lot of additions)
- Ex. 3*4
- single partial product in base 10
- 4 partial products in base 2.
-Why don't we consider a larger radix?

Radix 4 Multiplication

- Let's consider 2 bits at a time
- Halve the number of partial products we generate
- Radix 4 multiplication A * B
- Partial Product Shift By 2 bits each time

B Digit	Partial Product	Partial Product (Rewritten)
0	0*A	0
1	1*A	A
2	2*A	4*A - 2*A
3	3*A	4*A - A

- Recall: Multiplications by powers of 2 are left shifts
- Can we use this property?

Booth Recoding

- Uses radix 4 arithmetic
- Modification: Partial Products for $\mathrm{B}==2$ and $B==3$ can be separated into $4^{*} A-\{2,1\} A$
- 4*A can be implemented as a shift to the left by 2
- 2*A can be implemented as a shift to the left by 1
- Recall that we are doing radix 4 multiplication, we shift left by 2 positions for the next partial product
- Therefore, any 4*A term can be handled in the next partial product!
- To do this, the multiplier needs to look at 3 (rather than just 2) bits. The extra bit is the MSB of the previous

B Digit	Partial Product	Partial Product (Rewritten)
0	O*A	0
1	1*A	A
2	2*A	4*A - 2*A * A
3	3*A	4*A - A

Booth Recoding

B_{i+1}	B_{i}	$\mathrm{B}_{\mathrm{i}-1}$	Action	Comment
0	0	0	Add 0	
0	0	1	Add A	Includes $+4^{*}$ A from previous radix 4 digit $=+A$ in this position due to left shift by 2
0	1	0	Add A	
0	1	1	Add 2*A	Includes $+4^{*}$ A from previous round (+A in this position). ${ }^{*} 2$ is implemented as a left shift by 1
1	0	0	Sub 2*A	4*A will be added in when handling next radix 4 digit. *2 is implemented as a left shift by 1
1	0	1	Sub A	4*A will be added in when handling next radix 4 digit. Includes $+4^{*}$ A from previous radix 4 digit (+ A in this position)
1	1	0	Sub A	4*A will be added in when handling next radix 4 digit.
1	1	1	Add 0	4*A will be added in when handling next radix 4 digit. Includes $+4^{*}$ from previous radix 4 digit (+A in this position)

B Digit	Partial Product	Partial Product (Rewritten)
0	O*A	0
1	1*A	A
2	2*A	4*A - 2*A
3	3*A	4*A - A

Booth Recoding Example (Unsigned)

- Example: 6*4
- $\mathrm{B}_{-1}=0$

4’b0110	(6) (7)	$\mathrm{B}_{\text {ix }}$	B_{i}	$\mathrm{B}_{1 / 1}$	Action
* 4’be111		0	0	0	Add 0
		0	0	1	Add A
		0	1	0	Add A
0110	(Add 2A)	0	1	1	Add 2*A
+ 01100		1	0	0	Sub 2*A
+ 0000	(Add 0)	1	0	1	Sub A
		1	1	0	Sub A
+ 11111010	(Sub A)	1	1	1	Add 0
+ 01100	(Add 2A)				
+ 0000	(Add 0)				

(1)00101010 (42)

Additional Methods

- Pipelining!
- Used in many high performance systems
- Upside: Increased throughput
- Downside: Increased latency
- Good if you have many independent multiplications to perform and latency is acceptable

Figure from Lecture Slides

Signed Multiplication Tricks

- 2 things we need to do for signed multiplication:
- Sign extend partial products
- Subtract last partial products
- How can we simplify matters?
- Sign extension requires additional logic
- Add constants that allows us to eliminate the sign extension logic
- Merge with the constant that is added when negating the last partial product

Trick with Sign Extension

- Ex. Sign Extend 1100 to 8 bits: 11111100
- Add 1000
- Causes a carry to ripple

11111100

+ 00001000
(1)00000100
- Results in the original input with the MSB Inverted
- Ex. Sign Extend 0100 to 8 bits: 00000100
- Add 1000
- No carry ripple 00000100 + 00001000 00001100
- Results in the original input with the MSB inverted
- Allows us to eliminate the 4 AND gates required for sign extension
- Need an inverter and to subtract the constant later

Application of Sign Extension Trick

1) Invert Last Partial Product (From Lecture Slides)

X3 X2 X1 X0

* Y3 Y2 Y1 Y0

2) Add Constants (From Lecture Slides)

$$
\begin{array}{r}
\text { X3 X2 X1 X0 } \\
\text { * Y3 Y2 Y1 Y0 }
\end{array}
$$

+ X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+ X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
$+X 3 Y 2$ X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
$+\overline{X 3 Y 3} \overline{X 3 Y 3} \overline{X 2 Y 3} \overline{X 1 Y 3} \overline{X 0 Y 3} \quad 1 \quad 1 \quad 1$ 1
+ X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
$+\begin{array}{lllll}1 & 0 & 0 & 0\end{array}$
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
$+\begin{array}{llllll}1 & 0 & 0 & 0 & 0\end{array}$
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
$+\begin{array}{ccccccc}1 & 0 & 0 & 0 & 0 & 0\end{array}$ $+\overline{\mathrm{X} 3 \mathrm{Y} 3} \overline{\mathrm{X} 3 \mathrm{Y} 3} \overline{\mathrm{X} 2 \mathrm{Y} 3} \overline{\mathrm{X} 1 \mathrm{Y} 3} \overline{\mathrm{X} 0 \mathrm{Y} 3}$
$+\quad 1$ (+1 from Neg)

+	1	0	0	0	0	0	0
-	1	1	1	1	0	0	0

Application of Sign Extension Trick

3) Add Constants (From Lecture Slides)

X3 X2 X1 X0
* Y3 Y2 Y1 Y0

4) Negate Last Term (From Lecture Slides)

$$
\begin{array}{r}
\text { X3 X2 X1 X0 } \\
* \text { Y3 Y2 Y1 Y0 }
\end{array}
$$

Application of Sign Extension Trick

5) Add Constants (From Lecture Slides)

$$
\begin{array}{r}
\text { X3 X2 X1 X0 } \\
\text { * Y3 Y2 Y1 Y0 }
\end{array}
$$

- Can be implemented with limited modifications to the unsigned multiplier!
- Requires passing some constants to full adders and inverting some terms

Figure from Lecture Slides

Constant Coefficient Multipliers

Multiplying by a Constant

- Observation: Every number can be factored into a sum of powers of 2
- This is exactly what we do when we write a number in binary!
- Ex. $11=2^{3}+2^{1}+2^{0}=8+2+1$
- Can we leverage this to help us multiply by constants?
- Yes!
- Use the distributive property
- Ex. $A^{*} 11=A^{*}\left(2^{3}+2^{1}+2^{0}\right)=A^{*} 2^{3}+A^{*} 2^{1}+A^{*} 2^{0}$
- Use the fact that power of 2 multiplies are shifts
- Ex. $A^{*} 11=A \ll 3+A \ll 1+A \ll 0$
- Turned a multiply into shifts by fixed amounts and additions

Extending to Use Subtraction

- This concept can be extended to use subtraction
- Ex. $15=2^{3}+2^{2}+2^{1}+2^{0}=2^{4}-2^{0}=16-1$
- $A^{*} 15=A^{*} 2^{4}-A^{*} 2^{0}=A \ll 4-A \ll 0$
- This is denoted by drawing a line over digits with negative weight
- Ex. $15=001111=01000 \overline{1}$

Canonical Signed Digit

- CSD Represents Numbers using 1, $0, \overline{1}$ digits
- Minimizes the number of nonzero digits
- Minimizes the number of additions needed when multiplying by a constant Procedure (2 Passes):

1. Replace any occurrence of 2 or more 1 's ($01 . . .10$) with $10 . . . \overline{1} 0$
2. Replace any occurrence of 2 or more 1's (01...10) with 10... $\overline{1} 0$
and Replace 0110 with 0010
and Replace $0 \overline{1} 10$ with $00 \overline{10} 0$
Ex (From Lecture).
$0010111=23$
$001100 \overline{1}$ (Pass 1)
$010 \overline{1} 00 \overline{1}($ Pass 2$)=32-8-1$
