
EECS151/251A Discussion 11
Christopher Yarp

Apr. 19, 2019

Plan for Today

• Adders
• Multipliers
• Pipelining
• Questions

Adders
• Earlier in the term, we discussed the Carry Ripple Adder
• Replicates how we add by hand

• Compute sum[i] and carry_out[i] based on A[i], B[i], and carry_in[i]
• carry_in[i] = carry_out[i-1], carry_in[0] = 0 if unsigned.

• Primary Downside: Long Critical Path
• The carry ripple results in a critical path that goes through each FA
• Grows linearly with the number of bits added

• How do we make adders faster?
• Cut the critical path!
• How?

• Change how we work with carries!
FA

a b ci

co s
FA

a b ci

co s
FA

a b ci

co s
FA

a b ci

co s

a[3]
b[3]

a[2]
b[2]

a[1]
b[1]

a[0]
b[0]

s[3] s[2] s[1] s[0]co

c0

Critical
Path

Carry Select Adder

• One way to reduce critical path is to cut the adder into 2 parts,
severing the carry chain.
• Problem: The LSB side of the adder will work as expected but the MSB side

still depends on the value of the carry!
• Solution: There are 2 possibilities for the carry-in to the MSB adder, 0 and 1.

Calculate the result of BOTH cases and pick the correct one
• Allows the MSB computations to occur in parallel with the LSB calculation with a small

delay to select the correct value
• Downside: Replicated logic, wasted effort (energy) on result that is not used

Carry Select Example:

As
su

m
in

g
co

[1
] =

=
0

As
su

m
in

g
co

[1
] =

=
1

FA
a b ci

co s
FA

a b ci

co s
FA

a b ci

co s
FA

a b ci

co s

a[3]
b[3]

a[2]
b[2]

a[1]
b[1]

a[0]
b[0]

s[1] s[0]

c0

FA
a b ci

co s
FA

a b ci

co s

a[3]
b[3]

a[2]
b[2]

s[3] s[2]co

0

1

Example:
4’b0111 (7)

+ 4’b0101 (5)

5’b01100 (12)

1
1

1

0

1
0

0

1

1
1

1
1

0
0

0
0

0

1

10

1

1

10

0 1 1

0

Quick Aside: Associativity
• An operator, #, is associative if the following is true: (a # b) # c = a # (b # c)

• Addition*, multiplication, AND, OR, XOR, are associative

• This allows us to compute them in a tree structure
• Ex. Compute: a+b+c+d+e+f+g+h

See: Weisstein, Eric W. "Associative." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Associative.html
* Addition of floating point numbers is generally not considered associative

((((((a+b) + c) + d) + e) + f) + g) + h ((a+b) + (c+d)) + ((e+f) + (g+h))
Delay: 7 Additions
HW Requirements: 7 Adders

Delay: 3 Additions
HW Requirements: 7 Adders

+a

b

+
c

+
d

+
e

+
f

+
g

+
h

+
ba

+
dc

+
fe

+
hg

+ +

+

Adders in same
layer can be
computed in

parallel!

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/Associative.html

Carry Lookahead Adder

• The carry logic, as we have presented it, is not associative
• We need to compute the bits in order from LSB to MSB, since each FA needs

the carry-out of the previous stage
• This is a problem as it limits us to a linear chain of FAs, preventing us

from doing work in parallel
• Solution: Make the carry logic associative through re-defining the FAs

Redefining FAs: Carry Generate and Propagate

• Each FA Now Generates 2 New Signals
• g (Generate): True if the adder is guaranteed to generate a carry,

regardless of the value of the carry-in
• If both operands have a 1 in this position, it is guaranteed that a carry will

be generated
• !" = $" % &"

• p (Propagate): True if the carry-out of this stage will equal the
carry-in (propagate carry-in)
• If exactly one of the inputs is true, the carry-out will equal the carry-in
• '" = $"⨁&"

Redefining FAs: Carry Generate and Propagate

• The sum and carry-out of a FA can now be defined in terms
of these new signals
• The sum is true if:
• A single input is true and the carry-in is false
• The inputs are both 0 or both 1, and the carry-in is true
• !" = $"⨁&", where &" is the carry-in for this digit

• The carry-out is true if:
• Carry generate is true
• Propagate is true and the carry-in is true
• &"'(=)" + $" + &"

What good did that do?

• Note that the sum and carry-out bits in each FA still depend on the
values of the carry-in.
• This means that we still need the compute the carry-in value for each bit

position and have logic to generate the sum
• However, the p and g values can all be computed simultaneously
• There is no dependence on carry-in when computing p and g!

• We leverage this property in the carry lookahead adder by grouping
together adders and creating P and G signals for the entire group
• P represents if the entire group will propagate a carry signal
• G represents if the entire groups generates a carry signal

• The P and G signals can be processed in a tree structure

Carry Look-ahead Adder
• The smaller blocks are modified full adders.
• Can calculate g and p immediately
• Must wait for carry-in to compute sum bit
• Some FAs are required to create a carry-out
• !" = $" % &"
• '" = $"⨁&"
•)" = '"⨁*"
• *"+, = !" + '" % *"

a[0]
b[0]

s[0]

a[1]
b[1]

s[1]

a[2]
b[2]

s[2]

a[3]
b[3]

s[3]

a[4]
b[4]

s[4]

a[5]
b[5]

s[5]

a[6]
b[6]

s[6]

a[7]
b[7]

s[7]

c[0] c[0]

c[0]

c[0]

c[1]

c[2]

c[3]

c[4]

c[5]

c[6]

c[7]

c[8]

No Dependence on carry-in

Depend on carry-in

a[i]
b[i]

s[i] {p[i], q[i]}

2

c[i]

c[i+1]

{PA, QA}

{PB, QB}

2

2

2

{P, Q}

c_in

c_out

a[0]
b[0]

s[0]

a[1]
b[1]

s[1]

a[2]
b[2]

s[2]

a[3]
b[3]

s[3]

a[4]
b[4]

s[4]

a[5]
b[5]

s[5]

a[6]
b[6]

s[6]

a[7]
b[7]

s[7]

c[0] c[0]

c[0]

c[0]

c[1]

c[2]

c[3]

c[4]

c[5]

c[6]

c[7]

c[8]

Carry Look-ahead Adder
• The larger blocks compute P & G for higher

levels of the hierarchy.
• P & G can be computed without carry-in
• Carry-in is required to generate carry-out
• ! = !#!$
• % = %$ + %#!$
• '()* = % + '+,!

No Dependence on carry-in

Depend on carry-in

a[i]
b[i]

s[i] {p[i], q[i]}

2

c[i]

c[i+1]

{PA, QA}

{PB, QB}

2

2

2

{P, Q}

c_in

c_out

Parallel Prefix Adder

• One disadvantage of the carry lookahead adder as described in the
lecture slides is that the carry-out bit still ripple through the groups in
the first layer
• An alternative is to compute the carry bits directly without any

grouping
• However, we don’t want to fall back to a carry ripple solution.
• Trick: unroll the expression for the carry bit

Unrolling the Carry-in

• Recall: !"#$ = &" + (") !"
• Let’s compute the caries using unrolling

• !* = 0 (unsigned)
• !$ = &* + (*) !* = &*
• !, = &$ + ($) !$ = &$ + ($ &* = &$ + ($&*
• !- = &, + (,) !, = &, + (, &$ + ($&* = &, + (,&$ + (,($&*
• !. = &- + (-) !- = &- + (- &, + (,&$ + (,($&* = &- + (-&, + (-(,&$ + (-(,($&*

• Computing the caries involves ANDs and ORs of individual p and g signals
• These p and g signals can all be computed in parallel since they do not depend on carry-ins

• These operations are associative!
• We can change the order in which they are evaluated
• Allows us to compute them in a tree (parallel computation)!

Parallel Prefix Trees

• Similar to a reduction tree except that you want to keep the
intermediate values
• Intermediate values are re-used when computing

• In our case, we could use a reduction tree to compute the last carry.
• This would be of limited use to us because we need all of the intermediate

carry bits that would be computed as part of the reduction tree
• Parallel prefix trees give us these intermediate values!
• Work on operators that are associative

Different Parallel Prefix Trees
• There is a tradeoff in parallel prefix trees in how intermediate values

are computed/reused
• Note that both of these graphs produce the same outputs (the partial

results)

Kogge-Stone (Diagram from Lecture Slides)
Requires more resources but has a shorter
critical path.

Brent-Kung (Diagram from Lecture Slides)
Most reuse (minimal logic) but with a
longer critical path

Parallel Prefix Adder

• The Parallel Prefix Tree Described Above is for computing the carry bits
• We still need full adders to produce the p & g signals and to calculate

the final sum
• Modified full adders feed the parallel prefix tree with p and g values
• Full adders receive the carry in from the parallel prefix tree to compute the

sum bit

Multipliers

• Remember, the mechanics of multiplication in binary are generally
the same as decimal multiplication (signed multiply requires a slight
tweak).
• 2 Steps to Multiplication:
• Generation of partial products
• Adding partial products

• Making faster multipliers mostly involves changing how we deal with
generating and adding the partial products

Unsigned Multiplication Example

4’b0011 (3)
* 4’b0110 (6)

4’b0011 (3)
* 4’b0110 (6)

0000
0011
0011

+ 0000

00010010 (18)

Partial Products

• Partial Products can be generated in
parallel

• Let’s try to improve the addition of the
partial products

Carry Save Addition
• When we generate a carry in a given

column of an addition, we add it to the 2
values in the next column.
• This addition may in turn generate its own

carry
• If adding carries is just like another

addition, can we delay adding the carry
bits until later?
• Yes, so long as we remember what the carry

bits need to be added
• This is the basis of the carry save adder:

• Takes in a, b, and carry_in (multi-bit)
• Produces a sum and carry_out (multi-bit)

FA
a b ci

co s
FA

a b ci

co s
FA

a b ci

co s
FA

a b ci

co s

a[3]
b[3]

a[2]
b[2]

a[1]
b[1]

a[0]
b[0]

s[3] s[2] s[1] s[0]co[4]

ci[0]ci[1]ci[2]ci[3]

co[3] co[2] co[1] co[0]

0

CSA
a b ci

cos

n n n

n+1n

Using Carry Save Addition

• Using Carry Save Addition Allows us to create a multi-input adder that
is:
• Relatively fast: Carry Save Adders do not have a carry ripple
• Relatively small: do not need the logic to handle the carry logic to create a

fast adder
• However, still need a standard adder at the end to add the final carry-

out and sum.
• This is one of the fast adders such as the Carry Lookahead or Parallel Prefix

Adders
• Good news! We only need one of them.

Using Carry Save Addition

• Because addition is associative, it
actually does not matter what order
the carry bits are added back into the
sum
• Can use a tree structure

CSA
a b ci

cos

a
b

c

CSA
a b ci

cos

d

CSA
a b ci

cos

e

CSA
a b ci

cos

f

ADD
a b

s

CSA
a b ci

cos

a
b

c

CSA
a b ci

cos

d
e

f

CSA
a b ci

cos

CSA
a b ci

cos

ADD
a b

s

Quick Note on Pipelining With Feedback

• Pipelining in the presence of feedback is problematic due to the
dependence
• However, if the feedback loop includes operators that are associative

and commutative, we may be able to make the feedback loop shorter.
• Tightening the feedback path pushes some logic outside of the loop
• Logic outside of the feedback loop (feed forward) can usually be pipelined

relatively easily.

Example from Lecture

+

+x[i]

a

y[i]

y[i-1] +

+
x[i]

a

y[i]

y[i-1] +

+
x[i]

a

y[i]

y[i-1]

Orig: y[i] = (y[i-1]+x[i])+a Reorg: y[i] = y[i-1]+(x[i]+a) Feed Forward Section Pipelined

