FECS151/251A Discussion 11

Christopher Yarp
Apr. 19, 2019

Plan for Today

* Adders
* Multipliers
* Pipelining

e Questions

Adders

 Earlier in the term, we discussed the Carry Ripple Adder
* Replicates how we add by hand
* Compute sumli] and carry_out[i] based on A[i], B[i], and carry_in][i]
e carry_in[i] = carry_out]i-1], carry_in[0] = O if unsigned.
* Primary Downside: Long Critical Path
* The carry ripple results in a critical path that goes through each FA
* Grows linearly with the number of bits added

e How do we make adders faster? a[3]
* Cut the critical path! lbm
e How? l
* Change how we work with carries! Critical |2 b [i
Path F

Carry Select Adder

* One way to reduce critical path is to cut the adder into 2 parts,
severing the carry chain.

* Problem: The LSB side of the adder will work as expected but the MSB side
still depends on the value of the carry!

* Solution: There are 2 possibilities for the carry-in to the MSB adder, 0 and 1.
Calculate the result of BOTH cases and pick the correct one

* Allows the MSB computations to occur in parallel with the LSB calculation with a small
delay to select the correct value

* Downside: Replicated logic, wasted effort (energy) on result that is not used

o s nl—p S,
—“8—a T
1_m_|va ml_
ez
_IO_Wlbm —
o Se— © S '
S pe— = v wy
— —m
SE—a T S5 T
mas Y e 85—l S
—
ﬁ.a py Mo v J
m O -0 omZ2 o—
0_m_|va ol o © © Y
== [|]0d BUIWNSSY | == [1]02 buiwnssy u’
Q
O
O
X Vs
L ~ (@\|
4+ N N L
C SN’ S)
o - -1 1
— 1T O® 1 O
Q — - 1
N 88
. |
VI mJ - 1 O
S Ot <t I -
S m 1 LN
Q] S +
O 3 _
Ll I

s[2] 1

s[3] 1

co 0

Quick Aside: Associativity

* An operator, #, is associative if the followingis true: (a#b)#c=a# (b #c)
e Addition*, multiplication, AND, OR, XOR, are associative

* This allows us to compute them in a tree structure
* Ex. Compute: a+b+c+d+e+f+g+h

((((((a+b) +c)+d)+e)+f)+g)+ h ((a+b) + (c+d)) + ((e+f) + (g+h))

Delay: 7 Additions Delay: 3 Additions
HW Requirements: 7 Adders HW Requirements: 7 Adders
b ab cdef h
* C
| ¥ Adders in same
= +| ¥ o 1 L J L layer can be
= L _T_ f [-*—*—*—t]‘ computed in
v -+ - parallel!
= . : :
D +| 4 A A /
O + +

See: Weisstein, Eric W. "Associative." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Associative.html
* Addition of floating point numbers is generally not considered associative

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/Associative.html

Carry Lookahead Adder

* The carry logic, as we have presented it, is hot associative

* We need to compute the bits in order from LSB to MSB, since each FA needs
the carry-out of the previous stage

* This is a problem as it limits us to a linear chain of FAs, preventing us
from doing work in parallel

* Solution: Make the carry logic associative through re-defining the FAs

Redefining FAs: Carry Generate and Propagate

* Each FA Now Generates 2 New Signals

* g (Generate): True if the adder is guaranteed to generate a carry,
regardless of the value of the carry-in

* |f both operands have a 1 in this position, it is guaranteed that a carry will
be generated

* gi=a;-b;
* p (Propagate): True if the carry-out of this stage will equal the
carry-in (propagate carry-in)
* If exactly one of the inputs is true, the carry-out will equal the carry-in
* pi = a;Db;

Redefining FAs: Carry Generate and Propagate

* The sum and carry-out of a FA can now be defined in terms
of these new signals

* The sum is true if:
* Asingle inputis true and the carry-in is false
* The inputs are both 0 or both 1, and the carry-in is true
* s; = p;iDc;, where ¢; is the carry-in for this digit
* The carry-out is true if:
e Carry generate is true
* Propagate is true and the carry-in is true

* Civ1 = gi T Pi* G

What good did that do?

* Note that the sum and carry-out bits in each FA still depend on the
values of the carry-in.

* This means that we still need the compute the carry-in value for each bit
position and have logic to generate the sum

* However, the p and g values can all be computed simultaneously
* There is no dependence on carry-in when computing p and g!

* We leverage this property in the carry lookahead adder by grouping
together adders and creating P and G signals for the entire group

* P represents if the entire group will propagate a carry signal
* G represents if the entire groups generates a carry signal

* The P and G sighals can be processed in a tree structure

Carry Look-ahead Adder e e

o

'ﬂ| I

?
—
o
<=

 The smaller blocks are modified full adders. bi— =
* Can calculate g and p immediately —]
. . . a[2] —»
* Must wait for carry-in to compute sum bit b[2]—»| e _l'>
S[2] €
* Some FAs are required to create a carry-out v B3]
a[3] —>
 d;: = a: * b: b[3] —
Yi Lot } No Dependence on carry-in S1314- | B
* pi = a;®b; : :
a[4] —
Depend on carry-in s[4] 4
*Cit1 = gi TPi*C J b5 -‘
a[5] —»
b[5] —»
cli] 2 s[5] €
{ VRS cl6] [
. ,Q,} v
ali] —» 2 2 a[6] —»
bli] — STEES 7= bl6] —>) —
s[i] €= {plil, qlil} 2 {P,Q} s[6] <4
e vy <71
’ b[7] —»
S[7] € |

Carry Look-ahead Adder

* The larger blocks compute P & G for higher
levels of the hierarchy.
* P & G can be computed without carry-in
e Carry-in is required to generate carry-out
P =P,Pg
G = Gg + G4Pp
* Couyt = G+ Ci, P } Depend on carry-in

} No Dependence on carry-in

clil 2
3)
. P, Q]
ali] —»! > 2
b[i] —» | SYEES o
s[i] €= {plil, qlil} 5 {P,Q}
>
P, Q,

l

c[1]

l

c[2]

l

v c[3]

ke

¢ c[5]

;

c[0]
4
c[0]
{
c[4]
c[8]

c[6]

Parallel Prefix Adder

* One disadvantage of the carry lookahead adder as described in the
lecture slides is that the carry-out bit still ripple through the groups in
the first layer

* An alternative is to compute the carry bits directly without any
grouping

 However, we don’t want to fall back to a carry ripple solution.
* Trick: unroll the expression for the carry bit

Unrolling the Carry-in

Recall: ¢;11 = g; + p; * ¢;
Let’s compute the caries using unrolling
* ¢g = 0 (unsigned)
* C1=9otDPoCo= Yo
* c;=011tp1-¢1=91+p1(G0) = g1+ P190
* 3 =92tz 2 =92+ 02091 +P190) = g2 + P291 + P2P190
* €4 =93+ P33 =93+ p3(gz +P291 + P20190) = g3 + D392 + P3p291 + P3P2P190

Computing the caries involves ANDs and ORs of individual p and g signals
* These p and g signals can all be computed in parallel since they do not depend on carry-ins

These operations are associative!
* We can change the order in which they are evaluated
e Allows us to compute them in a tree (parallel computation)!

Parallel Prefix Trees

e Similar to a reduction tree except that you want to keep the
intermediate values

* Intermediate values are re-used when computing

* In our case, we could use a reduction tree to compute the last carry.

 This would be of limited use to us because we need all of the intermediate
carry bits that would be computed as part of the reduction tree

 Parallel prefix trees give us these intermediate values!
* Work on operators that are associative

Different Parallel Prefix Trees

* There is a tradeoff in parallel prefix trees in how intermediate values
are computed/reused

* Note that both of these graphs produce the same outputs (the partial

results)
lnputs 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0O Inputs 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
0PO0OOROO0OOOO00D oo_c»,o,a},«:a_,c:pp,opp,¢,,¢,.op
|/ LAV 00 e |,,f’| | / A VAV AV AV AVAVAVAVAVAVAVAVAY 1/ :
¢, 0.6,0 .6, 6,0, | e ¢QQ¢¢QQ¢¢QQ???Q tage |
T LT VSR SR
AT AT L e Sdaag55 77 ZFPRE
? o ‘ot et . RERREE =
L AT A T A A A WPl R R
Outputs : Ol CK 0 | & 0 | M o] o Mage 6 66 -y ":._-—6‘:%:-6’::]*' : : : : : :\w» 4
Brent-Kung (Diagram from Lecture Slides) Kogge-Stone (Diagram from Lecture Slides)
Most reuse (minimal logic) but with a Requires more resources but has a shorter

longer critical path critical path.

Parallel Prefix Adder

* The Parallel Prefix Tree Described Above is for computing the carry bits

* We still need full adders to produce the p & g signals and to calculate
the final sum
* Modified full adders feed the parallel prefix tree with p and g values

* Full adders receive the carry in from the parallel prefix tree to compute the
sum bit

Multipliers

* Remember, the mechanics of multiplication in binary are generally
the same as decimal multiplication (signed multiply requires a slight
tweak).

2 Steps to Multiplication:

e Generation of partial products
* Adding partial products

* Making faster multipliers mostly involves changing how we deal with
generating and adding the partial products

Unsigned Multiplication Example

4’°bo011 (3) 4°bo011 (3)

* 4°b0110 (6) v 4°b0110 (6)
* Partial Products can be generated in 0000 |
parallel 0011
’ . . 9011 — Partial Products
e Let’s try to improve the addition of the
partial products + 0000

—_—

00010010 (18)

Carry Save Addition

* When we generate a carry in a given
column of an addition, we add it to the 2
values in the next column.

* This addition may in turn generate its own
carry

* |f adding carries is just like another
addition, can we delay adding the carry
bits until later?

* Yes, so long as we remember what the carry
bits need to be added

* This is the basis of the carry save adder:
* Takes in a, b, and carry_in (multi-bit)
* Produces a sum and carry_out (multi-bit)

al3] al2] al1] a[0]

b[3] b[2] b[1] b[0]

l ci[3] l ci[2] l ci[1] l ci[0]

v \ 4 \ 4 v

a b ci a b ci a b ci a b ci

FA FA FA FA
co S co S co S co S 0
co[4] s[3] «co[3] s[2] co[2] s[1] co[1] s[0] co[O]

Using Carry Save Addition

* Using Carry Save Addition Allows us to create a multi-input adder that
IS:
* Relatively fast: Carry Save Adders do not have a carry ripple

» Relatively small: do not need the logic to handle the carry logic to create a
fast adder

* However, still need a standard adder at the end to add the final carry-
out and sum.

* This is one of the fast adders such as the Carry Lookahead or Parallel Prefix
Adders

 Good news! We only need one of them.

Using Carry Save Addition

* Because addition is associative, it
actually does not matter what order
the carry bits are added back into the
sum

* Can use a tree structure

4

wn o |[¢———0o
M

WLV OeE—n
n>n

O

CO

a b ci

CSA

S CcO

v v

b

a
ADD
S

v

Quick Note on Pipelining With Feedback

* Pipelining in the presence of feedback is problematic due to the
dependence

* However, if the feedback loop includes operators that are associative
and commutative, we may be able to make the feedback loop shorter.

* Tightening the feedback path pushes some logic outside of the loop

* Logic outside of the feedback loop (feed forward) can usually be pipelined
relatively easily.

X[i]= <
\ 4
a—»p T y[i—1]
<
f
v
yli]

Orig: y[i] = (y[i-1]+x[i])+a

4
a—p
\ 4
< yli-1]
<
f
\ 4
yli]

Reorg: y[i] = y[i-1]+(x[i]+a)

v
a— T
<
v
< yli-1]
<
f
i

Feed Forward Section Pipelined

