EECS151/251A Discussion 11

Christopher Yarp
Apr. 19, 2019

Plan for Today

- Adders
- Multipliers
- Pipelining
- Questions

Adders

- Earlier in the term, we discussed the Carry Ripple Adder
- Replicates how we add by hand
- Compute sum[i] and carry_out[i] based on $\mathrm{A}[\mathrm{i}], \mathrm{B}[\mathrm{i}]$, and carry_in[i]
- carry_in $[\mathrm{i}]=$ carry_out $[\mathrm{i}-1]$, carry_in $[0]=0$ if unsigned.
- Primary Downside: Long Critical Path
- The carry ripple results in a critical path that goes through each FA
- Grows linearly with the number of bits added
- How do we make adders faster?
- Cut the critical path!
- How?
- Change how we work with carries!

Carry Select Adder

- One way to reduce critical path is to cut the adder into 2 parts, severing the carry chain.
- Problem: The LSB side of the adder will work as expected but the MSB side still depends on the value of the carry!
- Solution: There are 2 possibilities for the carry-in to the MSB adder, 0 and 1. Calculate the result of BOTH cases and pick the correct one
- Allows the MSB computations to occur in parallel with the LSB calculation with a small delay to select the correct value
- Downside: Replicated logic, wasted effort (energy) on result that is not used

Carry Select Example:

Example:

$$
\begin{array}{r}
\text { 4’b0111 (7) } \\
+ \text { 4'b0101 }^{\prime} \text { (5) } \\
------ \\
\hline \text { 5'b01100 }
\end{array}
$$

Quick Aside: Associativity

- An operator, \#, is associative if the following is true: (a \# b) \#c = a \# (b \#c)
- Addition*, multiplication, AND, OR, XOR, are associative
- This allows us to compute them in a tree structure
- Ex. Compute: $a+b+c+d+e+f+g+h$

See: Weisstein, Eric W. "Associative." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Associative.html

* Addition of floating point numbers is generally not considered associative

Carry Lookahead Adder

- The carry logic, as we have presented it, is not associative
- We need to compute the bits in order from LSB to MSB, since each FA needs the carry-out of the previous stage
- This is a problem as it limits us to a linear chain of FAs, preventing us from doing work in parallel
- Solution: Make the carry logic associative through re-defining the FAs

Redefining FAs: Carry Generate and Propagate

- Each FA Now Generates 2 New Signals
- g (Generate): True if the adder is guaranteed to generate a carry, regardless of the value of the carry-in
- If both operands have a 1 in this position, it is guaranteed that a carry will be generated
- $g_{i}=a_{i} \cdot b_{i}$
- p (Propagate): True if the carry-out of this stage will equal the carry-in (propagate carry-in)
- If exactly one of the inputs is true, the carry-out will equal the carry-in
- $p_{i}=a_{i} \oplus b_{i}$

Redefining FAs: Carry Generate and Propagate

- The sum and carry-out of a FA can now be defined in terms of these new signals
- The sum is true if:
- A single input is true and the carry-in is false
- The inputs are both 0 or both 1 , and the carry-in is true
- $s_{i}=p_{i} \oplus c_{i}$, where c_{i} is the carry-in for this digit
- The carry-out is true if:
- Carry generate is true
- Propagate is true and the carry-in is true
- $c_{i+1}=g_{i}+p_{i} \cdot c_{i}$

What good did that do?

- Note that the sum and carry-out bits in each FA still depend on the values of the carry-in.
- This means that we still need the compute the carry-in value for each bit position and have logic to generate the sum
- However, the p and g values can all be computed simultaneously
- There is no dependence on carry-in when computing p and g !
- We leverage this property in the carry lookahead adder by grouping together adders and creating P and G signals for the entire group
- P represents if the entire group will propagate a carry signal
- G represents if the entire groups generates a carry signal
- The P and G signals can be processed in a tree structure

Carry Look-ahead Adder

- The smaller blocks are modified full adders.
- Can calculate g and p immediately
- Must wait for carry-in to compute sum bit
- Some FAs are required to create a carry-out
- $g_{i}=a_{i} \cdot b_{i}$
- $p_{i}=a_{i} \oplus b_{i}$$\quad$ No Dependence on carry-in
- $p_{i}=a_{i} \oplus b_{i}$
- $s_{i}=p_{i} \oplus c_{i}$
- $c_{i+1}=g_{i}+p_{i} \cdot c_{i}$

Depend on carry-in

Carry Look-ahead Adder

- The larger blocks compute P \& G for higher levels of the hierarchy.
- P \& G can be computed without carry-in
- Carry-in is required to generate carry-out
- $P=P_{A} P_{B}$

No Dependence on carry-in

- $G=G_{B}+G_{A} P_{B}$
- $C_{\text {out }}=G+C_{i n} P 〕$ Depend on carry-in

Parallel Prefix Adder

- One disadvantage of the carry lookahead adder as described in the lecture slides is that the carry-out bit still ripple through the groups in the first layer
- An alternative is to compute the carry bits directly without any grouping
- However, we don't want to fall back to a carry ripple solution.
- Trick: unroll the expression for the carry bit

Unrolling the Carry-in

- Recall: $c_{i+1}=g_{i}+p_{i} \cdot c_{i}$
- Let's compute the caries using unrolling
- $c_{0}=0$ (unsigned)
- $c_{1}=g_{0}+p_{0} \cdot c_{0}=g_{0}$
- $c_{2}=g_{1}+p_{1} \cdot c_{1}=g_{1}+p_{1}\left(g_{0}\right)=g_{1}+p_{1} g_{0}$
- $c_{3}=g_{2}+p_{2} \cdot c_{2}=g_{2}+p_{2}\left(g_{1}+p_{1} g_{0}\right)=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}$
- $c_{4}=g_{3}+p_{3} \cdot c_{3}=g_{3}+p_{3}\left(g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}\right)=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}$
- Computing the caries involves ANDs and ORs of individual p and g signals
- These p and g signals can all be computed in parallel since they do not depend on carry-ins
- These operations are associative!
- We can change the order in which they are evaluated
- Allows us to compute them in a tree (parallel computation)!

Parallel Prefix Trees

- Similar to a reduction tree except that you want to keep the intermediate values
- Intermediate values are re-used when computing
- In our case, we could use a reduction tree to compute the last carry.
- This would be of limited use to us because we need all of the intermediate carry bits that would be computed as part of the reduction tree
- Parallel prefix trees give us these intermediate values!
- Work on operators that are associative

Different Parallel Prefix Trees

- There is a tradeoff in parallel prefix trees in how intermediate values are computed/reused
- Note that both of these graphs produce the same outputs (the partial results)

Brent-Kung (Diagram from Lecture Slides) Most reuse (minimal logic) but with a longer critical path

Kogge-Stone (Diagram from Lecture Slides) Requires more resources but has a shorter critical path.

Parallel Prefix Adder

- The Parallel Prefix Tree Described Above is for computing the carry bits
- We still need full adders to produce the p \& g signals and to calculate the final sum
- Modified full adders feed the parallel prefix tree with p and g values
- Full adders receive the carry in from the parallel prefix tree to compute the sum bit

Multipliers

- Remember, the mechanics of multiplication in binary are generally the same as decimal multiplication (signed multiply requires a slight tweak).
- 2 Steps to Multiplication:
- Generation of partial products
- Adding partial products
- Making faster multipliers mostly involves changing how we deal with generating and adding the partial products

Unsigned Multiplication Example

$4 ’ b 0011(3)$

* 4’b0110 (6)
- Partial Products can be generated in parallel
- Let's try to improve the addition of the partial products

4’b0011 (3)
4'b0110 (6)
------ -

$$
00010010 \text { (18) }
$$

Carry Save Addition

- When we generate a carry in a given column of an addition, we add it to the 2 values in the next column.
- This addition may in turn generate its own carry
- If adding carries is just like another
 addition, can we delay adding the carry bits until later?
- Yes, so long as we remember what the carry bits need to be added
- This is the basis of the carry save adder:
- Takes in a, b, and carry_in (multi-bit)
- Produces a sum and carry_out (multi-bit)

Using Carry Save Addition

- Using Carry Save Addition Allows us to create a multi-input adder that is:
- Relatively fast: Carry Save Adders do not have a carry ripple
- Relatively small: do not need the logic to handle the carry logic to create a fast adder
- However, still need a standard adder at the end to add the final carryout and sum.
- This is one of the fast adders such as the Carry Lookahead or Parallel Prefix Adders
- Good news! We only need one of them.

Using Carry Save Addition

- Because addition is associative, it actually does not matter what order the carry bits are added back into the sum
- Can use a tree structure

Quick Note on Pipelining With Feedback

- Pipelining in the presence of feedback is problematic due to the dependence
- However, if the feedback loop includes operators that are associative and commutative, we may be able to make the feedback loop shorter.
- Tightening the feedback path pushes some logic outside of the loop
- Logic outside of the feedback loop (feed forward) can usually be pipelined relatively easily.

Example from Lecture

Orig: $y[i]=(y[i-1]+x[i])+a$
Reorg: $y[i]=y[i-1]+(x[i]+a)$
Feed Forward Section Pipelined

