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Plan for Today

• Practice Problem
• Cache Review
• Questions



Practice Problem

• How would you create a memory with 32x8 memory with 2 write ports and 
2 read ports given …
• 32x8 memory blocks with single read ports and single write ports
• 32x1 memory blocks with 2 write ports and 1 read port

• Optimize for area

• Assume that the area of the 32x1 memory is > 2/7 the cost of a 32x8 
memory
• We will assume that, in the case when the 2 write ports attempt to write to 

the same address in the same cycle, the result is undefined
• We will assume that, in the case when an address is simultaneously written 

to and read from, the read value is undefined.



Adding a Second Write Port
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Adding a Second Read Port
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Same Strategy with Our Dual Write Port Mem
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Memory Hierarchy

• In general, there is a tradeoff between 
the speed of memory and the size or cost 
of it.
• SRAM is fast but expensive and not 

especially dense
• 1T DRAM is dense, less expensive, but 

slower
• Spinning hard disks are dense, inexpensive, 

but very slow
• We want fast, high capacity, and low cost 

memory.  But we can’t have all of those 
qualities.

• Solution: The memory hierarchy
• Include multiple types of memory in our 

system.  Small quantities of fast memory 
and large quantities of slower memory.

• Move values between them when needed
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Using the Memory Hierarchy

• The memory hierarchy takes advantage of how applications access 
memory: there tends to some locality of access
• Spatial Locality: Nearby addresses are likely to be accessed soon

• Ex. Accessing elements sequentially in a vector, accessing variables on the stack, …
• Temporal Locality: Addresses that have been accessed recently are likely to 

be accessed again soon
• Ex. Accessing loop variables,  results computed/reused between loop iterations, …

• When we access a memory address, we move it from our large/slow 
memory into our small/fast memory.
• We also move data in nearby addresses along with it.

• We typically call this smaller, faster memory a cache.



Cache Operation

• Most caches transfer blocks of data between memory and adjacent 
memories in the hierarchy. These blocks are sometimes known as cache 
lines.
• Moving whole cache lines allows us to exploit spatial locality.
• Depending on the type of cache, there are conditions on where cache lines 

can be stored in the cache
• Common Types:

• Direct Mapped Cache: Each cache line can only be written into a single location in 
the cache.

• Fully Associative Cache: There are no restrictions on where a cache line can be 
written to in the cache

• Set Associative: There is a set of locations in the cache that a particular cache line 
can be written into



Direct Mapped Caches

Memory

Example:
DRAM Size = 4 GiB
Cache Line Size = 16 Bytes
Cache Size = 64 Bytes (4 Lines)

0x00000000
0x00000010
0x00000020
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0xFFFFFFF0
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Byte Offset

6
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0
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Address:



Direct Mapped Caches

• Each cache line can only be written to a single location in the cache.
• We can’t have 2 lines in the cache at the same time if they share the same index.
• If we load one, we need to evict the other, even if there are open cache entries
• This is called a conflict miss

• Pros
• Simple HW implementation

• Finding if a line is in the cache simply involves calculating the index then checking the tab and 
valid entries at that index

• Cons:
• Conflict misses may force cache lines to be evicted even if they will be acceded again 

soon



Fully Associative Cache

Memory

Example:
DRAM Size = 4 GiB
Cache Line Size = 16 Bytes
Cache Size = 64 Bytes (4 Lines)
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Fully Associative Cache

• There is no restriction of where a cache line can be stored in the cache.
• Conflict misses are impossible

• However, if the cache is full and we want to fetch a new value into the 
cache, a line will need to be evicted from the cache to make room
• This is called a capacity miss

• The decision on what to replace is called the cache replacement policy
• One example is evicting the least recently used line (LRU)

• Pros:
• Avoids conflict misses

• Cons:
• Requires much more hardware:

• Finding a line in the cache requires comparing the tag and valid bit of each cache entry
• Capacity misses require running the cache replacement policy which may require additional 

state



Set Associative Cache

Memory

Example:
DRAM Size = 4 GiB
Cache Line Size = 16 Bytes
Cache Size = 128 Bytes (8 Lines)
2 Way Set Associative:
 4 Indexes
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Set Associative Cache

• A cross between the Direct Mapped and the Fully Associative Cache
• Indexes now refer to sets of locations in the cache
• Cache lines are restricted to being stored in the set that corresponds 

to their index (similar to direct mapped)
• Within the set, there cache entries are fully associative, allowing 

flexibility in where a cache line is stored
• Replacement policies apply to entries within a set

• Set associative caches are defined as being “N way set associative”.
• N defines the number of entries per set


