
EECS151/251A Discussion 10
Christopher Yarp

Apr. 12, 2019

Plan for Today

• Practice Problem
• Cache Review
• Questions

Practice Problem

• How would you create a memory with 32x8 memory with 2 write ports and
2 read ports given …
• 32x8 memory blocks with single read ports and single write ports
• 32x1 memory blocks with 2 write ports and 1 read port

• Optimize for area

• Assume that the area of the 32x1 memory is > 2/7 the cost of a 32x8
memory
• We will assume that, in the case when the 2 write ports attempt to write to

the same address in the same cycle, the result is undefined
• We will assume that, in the case when an address is simultaneously written

to and read from, the read value is undefined.

Adding a Second Write Port

32x8
AddrR

DataW

DataR
AddrW

WE

32x8
AddrR

DataW

DataR
AddrW

WE

AddrR
AddrW0

DataW0

WE0

DataR

32x1
AddrR

DataW0

DataR
AddrW0

WE0

DataW1
AddrW1

WE1

0

AddrW1

DataW1

WE1
1

0

1

Adding a Second Read Port
32x8

AddrR

DataW

DataR
AddrW

WE

32x8
AddrR

DataW

DataR
AddrW

WE

AddrR0

AddrR1

AddrW
DataW
WE

DataR0

DataR1

Same Strategy with Our Dual Write Port Mem

32x8
AddrR

DataW

DataR
AddrW

WE

32x8
AddrR

DataW

DataR
AddrW

WE

AddrR
AddrW0

DataW0

WE0

DataR

32x1
AddrR

DataW0

DataR
AddrW0

WE0

DataW1
AddrW1

WE1

0

AddrW1

DataW1

WE1
1

0

1

AddrR0

AddrR1

AddrW0
DataW0
WE0

32x8
AddrR

DataW0

DataR
AddrW0

WE0

DataW1
AddrW1

WE1

AddrW1
DataW1
WE1

32x8
AddrR

DataW0

DataR
AddrW0

WE0

DataW1
AddrW1

WE1

DataR0

DataR1

Memory Hierarchy

• In general, there is a tradeoff between
the speed of memory and the size or cost
of it.
• SRAM is fast but expensive and not

especially dense
• 1T DRAM is dense, less expensive, but

slower
• Spinning hard disks are dense, inexpensive,

but very slow
• We want fast, high capacity, and low cost

memory. But we can’t have all of those
qualities.

• Solution: The memory hierarchy
• Include multiple types of memory in our

system. Small quantities of fast memory
and large quantities of slower memory.

• Move values between them when needed

Reg

L1
Cache

L2 Cache

L3 Cache

DRAM

Flash Memory (SSD)

Spinning Hard Disk

S
p
e
e
d

S
i
z
e

Using the Memory Hierarchy

• The memory hierarchy takes advantage of how applications access
memory: there tends to some locality of access
• Spatial Locality: Nearby addresses are likely to be accessed soon

• Ex. Accessing elements sequentially in a vector, accessing variables on the stack, …
• Temporal Locality: Addresses that have been accessed recently are likely to

be accessed again soon
• Ex. Accessing loop variables, results computed/reused between loop iterations, …

• When we access a memory address, we move it from our large/slow
memory into our small/fast memory.
• We also move data in nearby addresses along with it.

• We typically call this smaller, faster memory a cache.

Cache Operation

• Most caches transfer blocks of data between memory and adjacent
memories in the hierarchy. These blocks are sometimes known as cache
lines.
• Moving whole cache lines allows us to exploit spatial locality.
• Depending on the type of cache, there are conditions on where cache lines

can be stored in the cache
• Common Types:

• Direct Mapped Cache: Each cache line can only be written into a single location in
the cache.

• Fully Associative Cache: There are no restrictions on where a cache line can be
written to in the cache

• Set Associative: There is a set of locations in the cache that a particular cache line
can be written into

Direct Mapped Caches

Memory

Example:
DRAM Size = 4 GiB
Cache Line Size = 16 Bytes
Cache Size = 64 Bytes (4 Lines)

0x00000000
0x00000010
0x00000020
0x00000030

0xFFFFFFF0

Cache

04
Byte Offset

6
Cache Index

31
Tag

TagV
Index

0
Addr LSB

TagV1
TagV2
TagV3

0x00000040
0x00000050
0x00000060
0x00000070

Address:

Direct Mapped Caches

• Each cache line can only be written to a single location in the cache.
• We can’t have 2 lines in the cache at the same time if they share the same index.
• If we load one, we need to evict the other, even if there are open cache entries
• This is called a conflict miss

• Pros
• Simple HW implementation

• Finding if a line is in the cache simply involves calculating the index then checking the tab and
valid entries at that index

• Cons:
• Conflict misses may force cache lines to be evicted even if they will be acceded again

soon

Fully Associative Cache

Memory

Example:
DRAM Size = 4 GiB
Cache Line Size = 16 Bytes
Cache Size = 64 Bytes (4 Lines)

0x00000000
0x00000010
0x00000020
0x00000030

0xFFFFFFF0

Cache

04
Byte Offset

31
Tag

TagV
Addr LSB

TagV
TagV
TagV

Address:

Fully Associative Cache

• There is no restriction of where a cache line can be stored in the cache.
• Conflict misses are impossible

• However, if the cache is full and we want to fetch a new value into the
cache, a line will need to be evicted from the cache to make room
• This is called a capacity miss

• The decision on what to replace is called the cache replacement policy
• One example is evicting the least recently used line (LRU)

• Pros:
• Avoids conflict misses

• Cons:
• Requires much more hardware:

• Finding a line in the cache requires comparing the tag and valid bit of each cache entry
• Capacity misses require running the cache replacement policy which may require additional

state

Set Associative Cache

Memory

Example:
DRAM Size = 4 GiB
Cache Line Size = 16 Bytes
Cache Size = 128 Bytes (8 Lines)
2 Way Set Associative:
 4 Indexes

0x00000000
0x00000010
0x00000020
0x00000030

0xFFFFFFF0

Cache

04
Byte Offset

6
Cache Index

31
Tag

TagV
Index

0
Addr LSB

TagV1
TagV2
TagV3

0x00000040
0x00000050
0x00000060
0x00000070

Address:

TagV
TagV
TagV
TagV

Set Associative Cache

• A cross between the Direct Mapped and the Fully Associative Cache
• Indexes now refer to sets of locations in the cache
• Cache lines are restricted to being stored in the set that corresponds

to their index (similar to direct mapped)
• Within the set, there cache entries are fully associative, allowing

flexibility in where a cache line is stored
• Replacement policies apply to entries within a set

• Set associative caches are defined as being “N way set associative”.
• N defines the number of entries per set

