
EECS151/251A Discussion
Christopher Yarp

Jan. 25, 2019

About me

• 5th Year Graduate Student
• Advisor: John Wawrzynek

• Work in the Berkeley Wireless
Research Center (BWRC)
• Prior Projects: Implementing

Radio Basebands (DSP) in FPGAs
• Current Research: Design

Methodologies & Tools for DSP

My Job

• To help you get the most of this course!
• Running the discussion session
• Running the FPGA lab sections
• Answering questions in office hours and on Piazza

What to expect from discussion

• Review of important concepts from past week’s lectures
• Answer your questions!
• More examples

• Please give me feedback on what is helpful!

Textbook Resources

• I may, from time to time,
reference content from the
Weste, Harris book mentioned in
lecture
• CMOS VLSI Design: A Circuits and

Systems Perspective, 4th Ed.

• The textbook is not required but
does provide additional
explanation and examples

Trends in Digital Design
Scaling Laws

Moore’s Law

• Number of transistors per ASIC
die doubles every 1-2 years
• Typically fueled by shrinking

transistors to increase density

• General view: Moore’s Law is
coming to an end (or at least
slowing)
• Harder to scale the size of

transistors to increase transistor
density
• Cost/transistor is not scaling as

well as it used to
https://www.eetimes.com/document.asp?doc_id=1333109

Other ways of increasing transistor count

• If it is harder to scale transistor
sizes, what can we do?
• Increase the size of the die!
• Well … we could do this up to a

point. Undesirable to make dies
much larger
• Large dies = poor yield = higher cost

• Put more dies in a package!
• AMD Threadripper (Released)
• Intel 48-Core Cascade Lake

(Announced) AMD Threadripper “De-lidded”
https://www.extremetech.com/computing/253248-amd-
threadripper-delidded-multi-core-surprise-hood

Silicon Dies
Package (Opened)

Dennard Scaling & Frequency Scaling

Dennard Scaling
• Voltage can be reduced as

transistors are physically scaled
down in size
• Lower power

• Capacitance also scaled down
• Lower power, higher speed

• Keeps power density constant,
linearly improves delay (Weste,
Harris 256)

Frequency Scaling
• Keep voltage constant as

transistors are scaled (Weste,
Harris 256)
• Delay quadratically decreases

(YAY!!)
• Power density cubically increases

(NO!!)
• Generally stopped around 3-4 GHz

• Encountered the “power wall” –
cannot dissipate that much power

What do these laws mean for performance?

• Moore’s Law
• Performance may increase for a

given chip area
• Relies on parallelism

• Why not 2x when doubling
number of transistors?
• Limited opportunities for parallelism
• Overhead

• Does your 4 core processor work
2x as fast as your last 2 core
processor?

• Frequency Scaling:
• Performance did mostly scale with

frequency
• A 1.6 GHz processor performed

approx. 2x better than 800 MHz
processor without any change to
architecture!

• Don’t really see this today

Design Space, Tradeoffs, and the “Pereto
Optimal” Frontier
• We often have competing

objectives when designing
hardware
• High performance
• Low power
• Low cost

• We usually can’t get everything we
want - we need to make some
tradeoffs
• The “Perato Optimal” frontier

represents the edge of the tradeoff
space
• Can’t to go beyond the “Perato

Optimal” frontier

Logic Design

Combinational Logic

• Logic where the outputs only
depend on the current inputs
• Do not depend on any previous

inputs
• Can be expressed using a Truth

Table
• Enumerate all possible inputs
• Define the outputs

A B Out
0 0 0
0 1 0
1 0 0
1 1 1

AND
A

B
Out

Proving (or Disproving) Equivalence with
Truth Tables (Exhaustive Proof)

C B A A&&B (A&&B)||C Out
0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 1 0
1 0 1 0 1 0
1 1 0 0 1 0
1 1 1 1 1 0

AND

OR

A

B

C
NOT

AND
A

B

C

NOT

AND

NOT

C B A A&&B !(A&&B) !C Out
0 0 0 0 1 1 1
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 1 1 1 0 1 0
1 0 0 0 1 0 0
1 0 1 0 1 0 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

Registers (State Elements)

• Combinational logic is great but
what about making decisions
based on past inputs?
• We need a way to store

information!
• Registers (FlipFlops) act as a

storage element
• Move the input to the output at a the

0 to 1 transition of a “load” line
• There is some delay doing this

• Hold the output until the next 0 to 1
transition of the “load” line

• The “load” line is typically connected
to the clock (clk)

clk

Q

D

D Q

clk

n n

0 1

X 0

2

1

Time

Register Transfer Level (RTL)

• Can split your design into
combinational logic blocks and
state elements (sequential logic)

• This abstraction covers all digital
logic design
• Does not cover every electronic

circuit you could make
• Combinational loops are not allowed

• When one of the inputs to your
combinational logic is the output
• Ex: inverter wired to itself

• This abstraction helps us when
using HDL languages like Verilog!
• Describe combinational sections
• Describe sequential (state) sections

D Q

clk

Comb.
Logic

Comb.
Logic

You may even have feedback from registers!

ASICs vs. FPGAs

ASIC vs FPGAs
ASIC FPGA

• Flexibility in placing standard cells during design
• Can place exactly the cells you need

• Arrays of General Logic Resources
• Lookup Tables
• Registers
• Multiplexers
• Memory
• DSP Blocks
• Interconnect Network

• Programming the FPGA configures these general resources
to implement your HW design

ASIC vs FPGAs
ASIC
• No unused logic -> you placed exactly what you

needed
• Inflexible after manufacturing -> only

configurability is what you designed in
• Design iteration time: months - years
• High Fixed Manufacturing Cost (NRE – Non

Reoccurring Engineering)
• Designing and verifying

• Limited flexibility -> better get the right design
• Expensive to manufacture again -> avoid needing to fix

things and manufacture again
• Mask production (used during manufacturing)
• Setting up the production line

• Low Incremental Manufacturing Cost
• Once the design is done and the production line is set

up, producing more chips is not very expensive
• Better sell a lot of chips to amortize the NRE!

FPGA
• Generality -> unused logic in some applications
• Remains Flexible -> can change design later

(reprogram FPGA)
• Design iteration time: minutes - hours
• Medium Fixed Cost (NRE)

• Still HW design
• More things to consider than SW
• Relatively slow design tools

• Medium Incremental Cost
• FPGAs are general -> need larger die area to

accommodate additional logic -> more cost/die

• Good for lower volumes or when reconfigurability
is required

Questions

