FECS151/251A Discussion

Christopher Yarp
Jan. 25, 2019

A b O U t m e Tx Baseband

CSMA MAC
* 5th Year Graduate Student
* Advisor: John Wawrzynek . lfﬁ F:&;,?I{EEM
URHSIRIR. i | '.,._:‘. ! N
* Work in the Berkeley Wireless Ethernet 0l !"‘IL Ii-;;-n%;‘m!t

Research Center (BWRC) ";; A
T AN L | -._fil:l:

* Prior Projects: Implementing
Radio Basebands (DSP) in FPGAs

* Current Research: Design
Methodologies & Tools for DSP

¥ ']' :
' |

.,’Jl ,..Illnn*"'
e |

My Job

* To help you get the most of this course!
* Running the discussion session
* Running the FPGA lab sections
* Answering questions in office hours and on Piazza

What to expect from discussion

* Review of important concepts from past week’s lectures
* Answer your questions!
* More examples

* Please give me feedback on what is helpful!

Textbook Resources

* | may, from time to time,
reference content from the
Weste, Harris book mentioned in
lecture

 CMOS VLSI Design: A Circuits and
Systems Perspective, 4th Ed.

* The textbook is not required but
does provide additional
explanation and examples

% \

FRRRTE EMEIES

CMOS
/LS|

DESIGIN
- .~ ACIRCUITS
“oMND
= SYSTEMS
PERSPECTIVE

) e

v -L.‘-. v
SEANEILHE. WESTE _ DAVID MONEY HARRIS

Trends in Digital Design

Moore’s Law

* Number of transistors per ASIC
die doubles every 1-2 years
e Typically fueled by shrinking

EETimes

tranSiStorS to increase denSity HOME NE\\,NS PERSPECTIVES DESIG\I\fLINES VIDEOS RADIO EDUC&TION
* General view: Moore’s Law is
coming to an end (or at least Path to 2 nm May Not Be
slowing)
* Harder to scale the size of WOI'th It
. . . Diminishing returns may evaporate at 5 nm
transistors to Increase transistor | |
density By Rick Merritt, 03.23.18 [5

. . . : . H . . ? . =1 1
o Cost/tran5|stor is not scallng as https://www.eetimes.com/document.asp?doc_id=1333109

well as it used to

Other ways of increasing transistor count

e If it is harder to scale transistor
sizes, what can we do?

* Increase the size of the die!

* Well ... we could do thisup to a
point. Undesirable to make dies
much larger

e Large dies = poor yield = higher cost

* Put more dies in a package!
 AMD Threadripper (Released)

* Intel 48-Core Cascade Lake

(Announced) AMD Threadripper “De-lidded”
https://www.extremetech.com/computing/253248-amd-
threadripper-delidded-multi-core-surprise-hood

Package (Opened)
Silicon Dies

Dennard Scaling & Frequency Scaling

Dennard Scaling Frequency Scaling
* VVoltage can be reduced as * Keep voltage constant as
transistors are physically scaled transistors are scaled (Weste,
down in size Harris 256)
* Lower power * Delay quadratically decreases
. I
e Capacitance also scaled down (YAYL) . . .
: * Power density cubically increases
* Lower power, higher speed (NO!!)
* Keeps power density constant, * Generally stopped around 3-4 GHz
linearly improves delay (Weste, * Encountered the “power wall” -

Harris 256) cannot dissipate that much power

What do these laws mean for performance?

* Moore’s Law * Frequency Scaling:
* Performance may increase for a * Performance did mostly scale with
given chip area frequency
* Relies on parallelism * A 1.6 GHz processor performed
« Why not 2x when doubling approx. 2x better than 800 MHz
: processor without any change to
number of transistors?

architecture!

* Limited opportunities for parallelism e Don't really see this today

 Qverhead

* Does your 4 core processor work
2x as fast as your last 2 core
processor?

Design Space, Tradeoftfs, and the

‘II

Optimal™ Frontier

* We often have competing
objectives when designing
hardware

* High performance
* Low power
* Low cost

* We usually can’t get everything we
want - we need to make some
tradeoffs

* The “Perato Optimal” frontier
represents the edge of the tradeoff
space

* Can’t to go beyond the “Perato
Optimal” frontier

|”

Performance
(tasks/sec)

Want this to be high

“Pereto

"Pareto Optimal” Frontier

Want to be here ...
but cant

Diminishing
returns on
@ performance

here

Diminishing
returns on
cost here

Cost (# of compone>nts)

Want this to be low

Logic Design

Combinational Logic

* Logic where the outputs only
depend on the current inputs
* Do not depend on any previous
inputs

* Can be expressed using a Truth
Table

* Enumerate all possible inputs
* Define the outputs

AND
A8 lout_
0 0 0
0 1 0
1 0 0
1 1 1

Out

Proving (or Disproving) Equivalence with
Truth Tables (Exhaustive Proof)

AND NOT

A — B —
AND

B — ‘ AND
O
C C —NOT

A AR8B | (A&B)[|C Out A ARSB |I(AR&B)
0o 1

1 0
0
0
0
1
1
1
1

- B
I—\I—\OOI—\I—\OOE
p—

8
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

~ O O O » O O o
R R R R =R O O O

O O O O O kB =»
h, O B O PR O K,
-~ O O O » O O
O B R kPR O Rk K
O O O O P P kKRB Bk
©O O O O O R R =

Registers (State Elements)

 Combinational logic is great but
what about making decisions
based on past inputs?

* We need a way to store
information!

* Registers (FlipFlops) act as a
storage element
* Move the input to the output at a the
0 to 1 transition of a “load” line
* There is some delay doing this

* Hold the output until the nextOto 1
transition of the “load” line

* The “load” line is typically connected
to the clock (clk)

Register Transfer Level (RTL)

* Can split your design into * This abstraction covers all digital
combinational logic blocks and logic design

state elements (sequential logic) . pges not cover every electronic

circuit you could make

 Combinational loops are not allowed

* When one of the inputs to your
combinational logic is the output

* Ex:inverter wired to itself

* This abstraction helps us when
using HDL languages like Verilog!
* Describe combinational sections
You may even have feedback from registers! » Describe sequential (state) sections

ASICs vs. FPGAS

ASIC vs FPGAS

__________ o0 Vo0 oo | Voo o T & o O @ ~ o O o O @] L
- —— - iy e [AHE T i p! Prd L [y £ &
Y x s — - o] :1 b o) £l A i :1 b o) £l N £l
z - : z 2 | 2| ¢ 0 pfsoc [Qpeeo pEsio BpEea
2 [¢ - L2 [, 832 @okd2 EOopd2 OpB48
- J—— — b s vis | o 49 g @ i g gty g @ g g
S — : :
) E Voo Voo VDO yoo VDO
Q / . —r C Em o] L s ol LI E Em o] LT o] Lt
S - L g L g < I f;ﬁ’ = a D E'a;@ 8 [P = z Db E=
a 8 N | F L 7 [Frs pEsl o (T s D LEsl g L Ee o
[O I e) Vs el 5 0l 5 bl 5 S Bl g T ol 5
___________ o L g el P
L . L g9 L1 @ wriod 11 Ayt @ fwn 490 11
Timing-critical cells placed together ; Y t ; t =
* Flexibility in placing standard cells during design * Arrays of General Logic Resources
* Can place exactly the cells you need * Lookup Tables

* Registers
* Multiplexers
* Memory
* DSP Blocks
* Interconnect Network
* Programming the FPGA configures these general resources
to implement your HW design

ASIC vs FPGASs

ASIC

No unused logic -> you placed exactly what you
needed

Inflexible after manufacturing -> only
configurability is what you designed in

Design iteration time: months - years

High Fixed Manufacturing Cost (NRE — Non
Reoccurring Engineeringg

e Designing and verifying
* Limited flexibility -> better get the right design

* Expensive to manufacture again -> avoid needing to fix
things and manufacture again

* Mask production (used during manufacturing)
* Setting up the production line

Low Incremental Manufacturing Cost

* Once the design is done and the production line is set
up, producing more chips is not very expensive

Better sell a lot of chips to amortize the NRE!

FPGA

Generality -> unused logic in some applications

Remains Flexible -> can change design later
(reprogram FPGA)

Design iteration time: minutes - hours

Medium Fixed Cost (NRE)

* Still HW design
* More things to consider than SW
* Relatively slow design tools

Medium Incremental Cost

* FPGAs are general -> need larger die areato
accommodate additional logic -> more cost/die

Good for lower volumes or when reconfigurability
is required

Questions

