
EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and
Routing

Written by Nathan Narevsky (2014, 2017) and Brian Zimmer (2014)
Modified by John Wright (2015, 2016) and Arya Reais-Parsi (2019)

Overview

To begin this lab, get the project files by typing the following command

git clone /home/ff/eecs151/labs/lab5

cd lab5

Like last week, this lab has two parts. For the first part, we will continue to develop our GCD
coprocessor by improving its performance. After that, we will continue the physical design flow by
performing clock tree synthesis (CTS) and routing.

Design

One way we can improve the performance of our GCD coprocessor is by parallelizing the compute.
We can do this by including multiple GCD units in our design, and routing traffic to them as they
become available.

You will find that the solution to last week’s lab (fifo.v and gcd coprocessor.v) is included.
You should run make run in vcs-sim-rtl-coprocessor to observe that the functional tests pass.
However, an additional test has been added that checks the total number of cycles taken by the
coprocessor to complete the tests. Take note of the number of cycles that the tests take without
modification, as you will need it to calculate your speedup.

Your task is to edit gcd coprocessor.v to improve the perfomance below 250 cycles. We will do
this by using two instances of GCD.

You will find RTL that connects the datapath and controller into one module in gcd unit.v. You
may find this useful when refactoring the gcd coprocessor, since you will need fewer wires to place
both GCD instances.

You will also find stub code for an arbiter, which you should complete. We will use the arbiter
to route traffic to GCD units and preserve the response ordering. Most of your design can be
implemented with combinational logic, but you will need some state to remember which GCD
block contains the earliest data to preserve ordering.

EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and Routing 2

Question 1: Design

a) Submit your code (gcd coprocessor.v and gcd arbiter.v) with your lab assignment.

b) How many cycles did your simulation take? What was the % speedup?

Placement

To get started on CTS and routing, we will continue where we left off last lab. First, we will re-run
synthesis and placement as shown below. To run synthesis:

cd dc-syn

make

Now we are going to run through the placement steps that we did last lab in an automated way:

cd ../icc-par

make init_design_icc

make place_opt_icc

Where the first command creates the floorplan, and the second command will place the standard
cells. Open Makefile to see what these commands do.

You can see that the init design icc target executes IC Compiler with the following com-
mand:

init_design_icc_tcl := icc_scripts/init_design_icc.tcl

...

$(init_design_icc): $(iccdp_timestamp)

...

$(icc_exec) -f $(notdir $(init_design_icc_tcl)) \

| tee -i $(log_dir)/$(notdir $(init_design_icc)).log; \

So when you run make init design icc, the script icc scripts/init design icc.tcl is run.

Also notice the dependency for this target, $(iccdp timestamp). This target creates the build-iccdp
directory where IC Compiler runs and copies in the relevant files, then creates the current-iccdp

symbolic link. Another common target is $(icc timestamp), which creates the build-icc di-
rectory and the current-icc symbolic link. There are two directories created for IC Compiler:
current-iccdp (where dp stands for design planning) for floorplan exploration, and current-icc

where most of the flow is run.

EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and Routing 3

Question 2: Makefile structure

By reading through icc-par/Makefile, describe in order targets are executed if you simply type
make in icc-par. For each target, report whether or not IC Compiler is run (and if IC Compiler
runs, what is the filename of the script it sources).

Up until now, the scripts automatically synthesized your design, created the floorplan (pads and
power straps), and placed the standard cells. To view your design,

cd current-icc

./start_gui

Ignore the error message (this command expect to open the final design in the flow), then go to
File — Open Design. Each step in the flow gets saved as a different cell, so you can revert to earlier
steps for debugging. If you sort by the modification date, you can see the flow step ordering (which
is also defined in the Makefile). Open place opt icc.

Figure 1: After placement

Click on the “Layers” tab on the left side of the screen. Hide the power straps by clicking on “M8”,
“VIA8”, and “M9” and clicking “Apply.” Zoom in to look at a cell. At this point, there is just a
blackbox for each cell. On the left side of the screen, increase the level to 99 and click “Apply”
again. Now you can see inside each of the standard cells. Find a flip-flop (named DFF*), and look
for the pin indicators, as shown in Figure 2. Now click on the “Objects” tab, and make “Pins”
and “Pin Shape” by visible (Vis) and selectable (Sel) and click “Apply” again. By mousing over
the pins, you can see the layer the pins expect a connection in, and by clicking on them, you can
see the shape of metal that the routing tool will connect to. Right click on the Q pin of the flip
flop, and select Highlight — Net Flylines of Selected objects to see what signals use the bit stored
in the flip-flop.

EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and Routing 4

Figure 2: Pins in a flip-flop

You can also find specific cells in the design graphically. Go to Select — By Name Toolbar, searching
for *A reg* (wildcards are important unless you type the entire hierarchical path), and choose a
cell based on the search results. Click Keep to use only the cell you’ve selected, and click Change
Selection to select this cell. To zoom to the selected cell, go to View — Zoom — Zoom Fit Selection.

EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and Routing 5

Question 3: Analyzing Placement Results

a) Submit a screenshot of the flylines of the clock input to the D flip-flops B reg reg 14 (in a similar
method to highlighting the output of the Q pin).

b) What cell drives the clock input to B reg reg 14 clock pin? Submit a screenshot of the flylines
of the clock input to this cell as well.

c) Run report timing with and without wire parasitic contributions
(set zero interconnect delay mode true and set zero interconnect delay mode false),
and submit the critical path in the fast clk domain for both. How much did wire delay increase
the critical path by?

Now report the timing after placement for a specific path, and save this result for later.

report_timing -capacitance -nets -physical -path full_clock -significant_digits 3 \

-from gcd/GCDdpath0/A_reg_reg_1_/QN \

-to gcd/GCDdpath0/A_reg_reg_8_/D

Clock Tree Synthesis (CTS)

Up until this point, the clock tree has been treated as ideal—the clock arrives to every flip-flop at
exactly the same time. In fact, there is now a single inverter driving hundreds of gates (and in a
bigger design, thousands). If physical location wasn’t a problem, clock tree synthesis would only
need to add a chain of buffers with increasingly large size (or actually, more parallel buffers) like
the ubiquitous “optimal logical effort” problem. But in reality, the cells will be physically far from
each other and many wires will need to be added to the clock tree. Also, there are clock gating cells
which need a clock input before non-gated cells. IC Compiler handles all of this for you to create a
clock tree that has minimum skew and insertion delay, where skew is the difference in arrival time
between the shortest path in the clock tree and the longest path in the clock tree, and insertion
delay the propagation time between the source (root) of the clock tree and the flip-flops.

Now we are going to go through the steps required to create the clock tree. One useful way to
debug the scripts is to place the return command inside a script, which allows you to interactively
debug during one of the steps.

Open icc scripts/clock opt cts icc.tcl, and on line 30, add return. Then run:

cd ..

make clock_opt_cts_icc

gui_start

(If the Makefile reports this step is already completed, you can run rm current-icc/clock opt cts icc

to remove the timestamp.)

Look at the existing clock tree by going to Window — New Interactive CTS Window. Right click
on fast clk, then choose Levelized Abstract Clock Graph from Selected. Check the Show
and Expand boxes next to Gate and ICG. You can see there are two clock gates (icg) that drive
all of the flip-flops in the design.

EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and Routing 6

Now we are going to create the clock tree. To do this use the following commands:

clock_opt -only_cts -no_clock_route

The clock opt command will perform the clock tree synthesis, as well as other things such as
optimization and hold time violation fixing. With the -only cts flag only clock tree synthesis,
clock tree optimization and clock tree routing are performed. The -no clock route flag stops the
actual routing from happening so that we can see what the clock tree will look like before the
routing steps. After running these commands you should be able to view what it is going to do for
the clock tree. Go back to the main window and click Clock — Color by Clock Trees. Click Reload
and then OK. Your view should look like below:

Figure 3: Clock Tree

The colors refer to different levels within the clock tree, where a level is determined by how many
buffers the clock signal goes through before it gets to that point.

Now look at the clock tree timing by going to Window — New Interactive CTS Window. Right click
on fast clk, then choose Latency Abstract Clock Graph from Selected. The x-axis shows the
arrival time at various elements. You can see buffers were added into the clock tree as expected, and
the clock arrives almost simultaneously (becuase it is such as small design). By selecting various
elements, you can see them also get selected in the design window. Notice that no routes have
been created. There is no point in routing the clock tree if there are issues at this stage, because
routing can only make the results worse. This is why we used the no clock route flag—it is easier
to debug step-by-step if there are problems. This information is also contained in the clock tree
report, which reports the skew, shortest path, longest path, and other important information.

report_clock_tree -clock_tree [get_clocks fast_clk]

EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and Routing 7

Now rerun timing for the same path from the placement step:

report_timing -capacitance -nets -physical -path full_clock -significant_digits 3 \

-from gcd/GCDdpath0/A_reg_reg_1_/QN \

-to gcd/GCDdpath0/A_reg_reg_8_/D

Notice that the clock network is now included in the timing report.

Question 4: Timing after CTS

Did the insertion of the clock tree help or hurt the path -from gcd/GCDdpath0/A reg reg 1 /QN

-to gcd/GCDdpath0/A reg reg 8 /D? By how much? Why?

One great tool to understand timing inside your design is to go to Windows — Timing Analysis
Window. Click “Apply” and then “Ok”. You should have a window like the one below:

Figure 4: Timing Window

EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and Routing 8

As you should be able to see, the current design does not meet timing, since there are multiple
paths with negative slack. There are a lot of interesting ways to visualize this information inside
of this window, so figure out how to show a histogram of the path slack at this point. In the
histogram, you should be able to click on one of the bars and it will display the paths that make
up that bin.

Next we need to connect the new cells we added to the design to the power grid. Until now,
every cell in the design came from the synthesized netlist, but now that IC Compiler has physical
information, it will need to modify the design by changing gates, inserting gates, and resizing gates,
and this will change the netlist.

derive_pg_connection -power_net VDD -power_pin VDD -ground_net VSS -ground_pin VSS

Because there is a clock tree, now there is a possibility for hold times.

remove_ideal_network [all_fanout -flat -clock_tree]

set_fix_hold [all_clocks]

These commands above delete the ideal network from the clock tree, and also let the tool know
that it needs to take that delay into account. The second command tells the tool to fix hold time
violations on all of the clock paths. The last line saves the design as a different name than previous
so that we can come back to this at any point later. Now open the Timing Analysis Window again,
and report the critical path.

Skew in the clock tree can actually be useful, by extending the clock period on critical paths. Now
that the clock tree has been inserted, let IC Compiler try to optimize timing again.

extract_rc

clock_opt -no_clock_route -only_psyn -power

derive_pg_connection -power_net VDD -power_pin VDD -ground_net VSS -ground_pin VSS

The first line tells the tool to extract the wires in the design for their parasitic resistance and
capacitance, and the second line tells the tool to perform the optimization for the clock tree net-
work. With the -no clock route and -only psyn options nothing will get routed, it will just get
optimized. This command will probably cause your circuit to meet timing again! Last, there are
actually no wires connecting the clock pins together. We will use a different command for the
routing of the clock nets:

route_zrt_group -all_clock_nets -reuse_existing_global_route true

The route zrt group command is the command that we will be using to do the actual routing.
We route only the clock nets (-all clock nets), because these are much more critical than regular
signal routes.

EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and Routing 9

Question 5: Clock Tree

Print a screenshot of the highlighted longest and shortest path in the clock tree (fast clock, not slow
clock). Hint: For any of the interactive windows (either CTS or Timing), selecting paths will highlight
them in the design window.

Question 6: Changing the Design

Clock routes are made with different metal rules, because resistance of wires can contribute to clock
skew. Experiment with different non-default routing rules that change available clock cells and routing
options (common cts settings icc.tcl) and report the results.

Don’t bother saving the design, just close it. Now use the built in scripts to run all of the clock tree
synthesis steps. You should remove the return you added to line 30 of icc scripts/clock opt cts icc.tcl.

rm current-icc/clock_opt_cts_icc

make clock_opt_route_icc

Routing

So far only the clock cells have been routed, but we need to route every connection in the design.
Global routes are top level wires that span large distances on the chip, so often you want to route
those first to make sure that they can actually connect properly. After those are in place, then you
can route the other signals around the global route (called detail route).

Add return to line 25 of icc-scripts/route icc.tcl, and run:

make route_icc

gui_start

report_preferred_routing_direction

The above command reports what direction the different metal layers are supposed to be routed
in. The output can be seen below:

**

Report : Layers

Design : top

Version: G-2012.06-ICC-SP3

Date : Wed Oct 1 10:02:04 2014

**

Layer Name Library Design Tool understands

M1 Horizontal Horizontal Horizontal

EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and Routing 10

M2 Vertical Vertical Vertical

M3 Horizontal Horizontal Horizontal

M4 Vertical Vertical Vertical

M5 Horizontal Horizontal Horizontal

M6 Vertical Vertical Vertical

M7 Horizontal Horizontal Horizontal

M8 Vertical Vertical Vertical

M9 Horizontal Horizontal Horizontal

MRDL Vertical Vertical Vertical

1

By default the routing directions should be all the same for the library, design, and what the tool
understands. You can change these directions on a per-layer basis, but unless there is a good reason
to do so the defaults are usually good options. If you do change any of the layers, make sure that
whatever you are trying to do is still routable - for example, do not create power straps below the
top layer grid horizontally so that they cannot connect down to the standard cells.

The following command will show what technology files the tool is using for parasitic resistance
and capacitance information.

report_tlu_plus_files

And the output should appear like this:

**

Report : tlu_plus_files

Design : top

Version: G-2012.06-ICC-SP3

Date : Wed Oct 1 10:03:43 2014

**

Max TLU+ file: /home/ff/eecs151/labs/stdcells/synopsys-32nm/multi_vt/tluplus/max.tluplus

Min TLU+ file: /home/ff/eecs151/labs/stdcells/synopsys-32nm/multi_vt/tluplus/min.tluplus

Tech2ITF mapping file: /home/ff/eecs151/labs/stdcells/synopsys-32nm/multi_vt/techfile/tech2itf.map

1

This tells us where the tluplus files live, which contain the information for the wiring parasitics.
Open up the max tluplus file and look at the top. A tluplus file is generated from an ITF file,
which stands for Interconnect Technology Format. For each metal layer and dielectric combination
there are a few parameters that need to be set. Let’s take a look at one set of these:

CONDUCTOR M9 { THICKNESS = 0.22 WMIN=0.16 SMIN=0.16 RPSQ=0.28 }

DIELECTRIC D9 { THICKNESS = 0.5 ER=3.9 }

EECS 151/251A ASIC Lab 5: Clock Tree Synthesis (CTS) and Routing 11

This creates a M9 metal layer with a D9 dielectric layer, with a few other parameters specified. The
THICKNESS is the thickness of the metal, the WMIN is the minimum width for that metal layer, the
SMIN is the minumum spacing for the layer, and the RPSQ is the resistance per square of the metal
layer. For those of you unfamiliar with resistance per square, this number is taken and multiplied
the length of the wire and divided by the width to get the actual resistance. For the dielectric the
ER is the relative permittivity of the dielectric material.

Continuing with the script, enter the following commands:

route_opt -initial_route_only

save_mw_cel -as $ICC_ROUTE_CEL

The route opt command will route the design as well as perform postroute optimization at the
same time. The -initial route only flag makes it only do the initial routing stage, and will not
actually perform the optimization. We do this first, and save it so we can have a checkpoint to
come back to.

Issue the following commands:

route_opt -skip_initial_route -effort low -power

derive_pg_connection -power_net VDD -power_pin VDD -ground_net VSS -ground_pin VSS

This time we skip the initial route since it has already been done, and set the effort to low so that
it runs through faster. There are other options for the route opt command to try to improve the
performance of the routing. However, this design is not large enough to fully exercise these other
options and therefore we will not be discussing them. More information can be found in the man
page for route opt.

If the design does not meet timing now do not worry, that will be fixed in the signoff stages later in
the design process, which will basically boil down to running the core at a slower frequency. The
tools can only optimize so much, and once they hit their limit there is not much else you can do
without a bunch of manual intervention.

Question 7: Reporting Options

a) Using what we have learned in this lab and previous labs, report the critical path. Show the
command and the result. Does the design meet timing? If not, just report that it doesn’t, no
need to try and fix it for now

b) Report how much power IC Compiler says the design is going to dissipate. Show the command
and the result. Please note that IC Compiler has no notion of actual switching activity so this
may not be the most accurate power number.

c) Report the fanout of the nets. Show the command to use, and the signal with the maximum
fanout and maximum capacitance (these may not be the same net, but you should only need one
command to get both).

