
EECS 151/251A ASIC Lab 3: Logic Synthesis

Written by Nathan Narevsky (2014, 2017) and Brian Zimmer (2014)
Modified by John Wright (2015, 2016) and Arya Reais-Parsi (2019)

Overview

For this lab, you will learn how to translate RTL code into a gate-level netlist in a process called
synthesis. In order to successfully synthesize your design, you will need to understand how to
constrain your design, learn how the tools optimize logic and estimate timing, analyze the critical
path of your design, and simulate the gate-level netlist.

To begin this lab, get the project files by typing the following command

git clone /home/ff/eecs151/labs/lab3.git

cd lab3

If you have not done so already you should add the following line to the .bashrc file in your home
folder. 1 so that every time you open a new terminal you have the paths for the tools setup
properly.

source /home/ff/eecs151/tutorials/eecs151.bashrc

Note: after doing this, you need to manually source your own .bashrc file or open a new terminal.
You can test whether your path is setup properly or not by typing which dc shell and making
sure that it does not say command not found.

Understanding the example design

We have provided a circuit described in Verilog that computes the greatest common divisor (GCD)
of two numbers. Unlike the FIR filter from the last lab where the testbench constantly provided
stimuli, the GCD algorithm takes a variable number of cycles, so the testbench needs to know when
the circuit is done to check the output. This is accomplished through a “ready/valid” handshake
protocol. The block diagram is shown in Figure 1.

module gcd#(parameter W = 16)

(

input clk, reset,

input [W-1:0] operands_bits_A, // Operand A

1For more information on what .bashrc does, see https://www.tldp.org/LDP/abs/html/sample-bashrc.html.

https://www.tldp.org/LDP/abs/html/sample-bashrc.html

EECS 151/251A ASIC Lab 3: Logic Synthesis 2

input [W-1:0] operands_bits_B, // Operand B

input operands_val, // Are operands valid?

output operands_rdy, // ready to take operands

output [W-1:0] result_bits_data, // GCD

output result_val, // Is the result valid?

input result_rdy // ready to take the result

);

gcdGCDUnit

 gcdTestHarness

operands_bits_A

operands_bits_B

operands_val

operands_rdy

result_bits_data

result_rdy

result_val clk

reset

Figure 1: Block diagram for GCD Test Harness

On the operands boundary, nothing will happen until GCD is ready to receive data (operands rdy).
When this happens, the testbench will place data on the operands (operands bits A and operands bits B),
but GCD will not start until the testbench declares that these operands are valid (operands val).
Then GCD will start.

The testbench needs to know that GCD is not done. This will be true as long as result val is 0
(the results are not valid). Also, even if GCD is finished, it will hold the result until the testbench is
prepared to receive the data (result rdy). The testbench will check the data when GCD declares
the results are valid by setting result val to 1.

The main contract is that if the interface declares it is ready, and the other side declares valid, the
information must be transfered.

Open src/gcd.v. This is the top-level of GCD and just instantiates gcd control and gcd datapath.
Separating files into control and datapath is generally a good idea. Open src/gcd datapath.v.

EECS 151/251A ASIC Lab 3: Logic Synthesis 3

This file stores the operands, and contains the logic necessary to implement the algorithm (subtrac-
tion and comparison). Open src/gcd control.v. This file contains a state machine that handles
the ready-valid interface and controls the mux selects in the datapath. Open src/gcd testbench.v.
This file sends different operands to GCD, and checks to see if the correct GCD was found. Make
sure you understand how this file works. Note that the inputs are changed on the negative edge
of the clock. This will prevent hold time violations for gate-level simulation, because once a clock
tree has been added, the input flops will register data at a time later than the testbench’s rising
edge of the clock.

Now simulate the design by running make run in vcs-sim-rtl. Open the waveform in DVE and
try to understand how the code works by comparing the waveforms with the Verilog code. It might
help to sketch out a state machine diagram and draw the datapath.

Question 1: Understanding the algorithm

By reading the provided Verilog code and/or viewing the RTL level simulations, demonstrate that
you understand the provided code:

a) Draw a table with 5 columns (cycle number, value of A reg, value of B reg, next value of A reg,
next value of B reg) and fill in all of the rows for the first test vector (GCD of 27 and 15)

b) In src/gcd testbench.v, the inputs are changed on the negative edge of the clock to prevent
hold time violations. Is the output checked on the positive edge of the clock or the negative edge
of the clock? Why?

c) In src/gcd testbench.v, what will happen if you change result rdy = 1; to result rdy =

0;? What state will gcd control.v state machine be in?

Question 2: Testbenches

a) Modify src/gcd testbench.v so that intermediate steps are displayed in the format below. In-
clude a copy of the code you wrote in your writeup (this should be approximately 3-4 lines).

0: [......] Test (x), [x == x] (decimal)

1: [......] Test (x), [x == 0] (decimal)

2: [......] Test (x), [x == 0] (decimal)

3: [......] Test (x), [x == 0] (decimal)

4: [......] Test (x), [x == 0] (decimal)

5: [......] Test (x), [x == 0] (decimal)

6: [......] Test (0), [3 == 0] (decimal)

7: [......] Test (0), [3 == 0] (decimal)

8: [......] Test (0), [3 == 27] (decimal)

9: [......] Test (0), [3 == 12] (decimal)

10: [......] Test (0), [3 == 15] (decimal)

11: [......] Test (0), [3 == 3] (decimal)

12: [......] Test (0), [3 == 12] (decimal)

13: [......] Test (0), [3 == 9] (decimal)

14: [......] Test (0), [3 == 6] (decimal)

15: [......] Test (0), [3 == 3] (decimal)

16: [......] Test (0), [3 == 0] (decimal)

17: [......] Test (0), [3 == 3] (decimal)

18: [passed] Test (0), [3 == 3] (decimal)

19: [......] Test (1), [7 == 3] (decimal)

EECS 151/251A ASIC Lab 3: Logic Synthesis 4

Synthesis: Step-by-step

The dc-syn directory contains all of the files you need to run synthesis with Synopsys Design
Compiler. Start by creating a new working directory for synthesis. The Makefile automatically
creates versioned directories for you, so that every time you rerun the tools, you get a clean starting
point. This also lets you go back through previous experiments to compare results.

cd dc-syn

make new-build-dir

ls

You will see a new directory with the current timestamp (eg. build-dc-2014-09-11 17-15/) as
well as a symbolic link called current-dc that points to this directory. Move into this directory,
and start Design Compiler.

cd current-dc

dc_shell-xg-t -64bit -topographical_mode

First, you need to make DC aware of your technology. This has been setup for you, and is contained
in a single file.

source dc_setup.tcl

Then, you need to define a place in the filesystem for DC to place files

define_design_lib WORK -path ./WORK

Next, read in the Verilog code that was provided. If there are any errors in your code, you will be
notified at this point.

analyze -format verilog {gcd_control.v gcd_datapath.v gcd.v}

Next, you need to translate the RTL into a technology-independent representation within DC known
as GTECH using the ’elaborate’ step. During this step, the tool will report all of the memories it
found.

elaborate {gcd}

===

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |

===

| B_reg_reg | Flip-flop | 16 | Y | N | Y | N | N | N | N |

| A_reg_reg | Flip-flop | 16 | Y | N | Y | N | N | N | N |

EECS 151/251A ASIC Lab 3: Logic Synthesis 5

===

===

| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |

===

| state_reg | Flip-flop | 2 | Y | N | N | N | N | N | N |

===

As expected, A/B are registers, and the state machine needs two flip-flops to hold the current state.

At this point, synthesis needs to know about the constraints of your design (eg. how fast the clock
is). The units for these constraints are ns for timing and pF for capacitance.

create_clock clk -name clk1 -period 0.7

set_clock_uncertainty 0.05 [get_clocks clk1]

set_driving_cell -lib_cell INVX1_RVT [all_inputs]

set max_cap [expr [load_of saed32rvt_tt1p05v25c/AND2X1_RVT/A1] * 5]

set_load $max_cap [all_outputs]

The first line here creates a clock named clk1 with a period of 0.7ns. It is connected to the port
clk at the input of the verilog module. The next line creates clock uncertainty, which is meant
to model variations in the input clock signal, as well as negative effects coming from the clock
network. Design compiler does not create a clock tree, so these contraints are used when checking
timing with an ideal clock network. The set driving cell command tells the tools what cells are
driving all of the inputs, and the cell specified in this case is an inverter from the library. The set

max cap instruction creates a variable that is equal to 5 times the loading of a two input AND gate.
The set load command sets the loading for this block’s outputs to be equal to the variable that
the previous command created.

Before you continue with synthesis, look at what the tool knows about your design so far.

start_gui

In the “Hier.1” panel, right click on gcd — Schematic View. Then double click on the control block
to dive into this part of the hierarchy.

Notice that there are no actual standard cells yet. DC understands our design, but has yet to map
it to a technology or apply the constraints. The next command does almost all of synthesis in a
single command.

compile_ultra -gate_clock -no_autoungroup

The compile ultra command will report how the design is being optimized. You should see Design
Compiler performing technology mapping, delay optimization, and area reduction. The fragment
from the compile ultra shows the worst negative slack which indicates how much room there is

EECS 151/251A ASIC Lab 3: Logic Synthesis 6

between the critical path in your design and the clock constraint. Larger negative slack values
are worse since this means that your design is missing the desired clock frequency by a great
amount. Total negative slack is the sum of all negative slack across all endpoints in the design.
The gate clock flag enables clock gating optimization, which automatically inserts clock gates to
reduce dynamic power by not clocking registers that do not need to be updated every clock cycle.
The no autoungroup flag tells the tool to not automatically ungroup the design. This means that
the hierarchy is preserved, which is very useful for designs when you need to speficy constraints on
a specific cell in the hierarchy. If the tool removes the hierarchy, finding the same cell again can be
very difficult, if not impossible, so we will typically use this flag.

Beginning Timing Optimization

TOTAL

ELAPSED WORST NEG SETUP DESIGN LEAKAGE

TIME AREA SLACK COST RULE COST ENDPOINT POWER

--------- --------- --------- --------- --------- ------------------------- ---------

0:00:14 873.0 0.00 0.0 0.0 83824648.0000

0:00:14 873.0 0.00 0.0 0.0 83824648.0000

0:00:14 873.0 0.00 0.0 0.0 83824648.0000

0:00:14 873.0 0.00 0.0 0.0 83824648.0000

0:00:14 873.0 0.00 0.0 0.0 83824648.0000

Now look at the schematic again. Now you can see that the design only consists of actual standard
cells now.

At this point, it is a good idea to check the design.

check_design

Warning: In design 'gcd_datapath_W16', port 'A_mux_sel[0]' is not connected to any nets. (LINT-28)

Warning: In design 'gcd_control', port 'A_mux_sel[0]' is not connected to any nets. (LINT-28)

Warning: In design 'gcd', a pin on submodule 'GCDdpath0' is connected to logic 1 or logic 0. (LINT-32)

Pin 'A_mux_sel[0]' is connected to logic 0.

Warning: In design 'gcd_datapath_W16', a pin on submodule 'clk_gate_B_reg_reg' is connected to logic 1 or logic 0. (LINT-32)

Pin 'TE' is connected to logic 0.

Warning: In design 'gcd_datapath_W16', a pin on submodule 'clk_gate_A_reg_reg' is connected to logic 1 or logic 0. (LINT-32)

Pin 'TE' is connected to logic 0.

The ’TE’ warning is not a problem (we don’t have scan in this design, so the scan enable pins is
hardwired to 0). However, the other three warnings are interesting. Look at the RTL and figure
out why we see this error.

Question 3: Synthesis optimization

a) Why is A mux sel[0] not connected to any nets? Why is this ok? Is there some other pin that has
the same functionality?

EECS 151/251A ASIC Lab 3: Logic Synthesis 7

With the -no autoungroup flag, DC never changes the ports on your hierarchical modules. If you
want to clear this warning, you can let DC ungroup your hierarchy.

compile_ultra -gate_clock

check_design

Now, generate a quality-of-result (QOR) summary)

report_qor

From this report, you know the maximum speed of your design (Critical Path Clk Period - Critical
Path Slack).

Timing Path Group 'clk1'

Levels of Logic: 12.00

Critical Path Length: 0.57

Critical Path Slack: 0.04

Critical Path Clk Period: 0.70

Total Negative Slack: 0.00

No. of Violating Paths: 0.00

Worst Hold Violation: 0.00

Total Hold Violation: 0.00

No. of Hold Violations: 0.00

So what path is setting the maximum frequency?

report_timing -capacitance -transition_time -input_pins -significant_digits 3

The following timing report explains the critical path in the design. The path starts when the clock
arrives at A reg reg[8], and the value needs to arrive at the D input of the flip-flop A reg reg[11]
within the clock period minus the clock uncertainty minus the setup time of the flop.

The fanout column tells you how many other pins the current output drives, and the capacitance
column tells you how much capacitance the tool calculated for that net. The transition time is the
rise or fall time of the node (notice the last column tells you whether the rise or fall transition is
the transition on the path). The Incr column shows the incremental delay through each logic gate.
If any section shows “VIOLATED” instead of “MET”, you have a timing violation (which will also
show as negative slack in the QOR summary).

Operating Conditions: tt1p05v25c Library: saed32rvt_tt1p05v25c

Wire Load Model Mode: Inactive.

Startpoint: GCDdpath0/A_reg_reg_1_

EECS 151/251A ASIC Lab 3: Logic Synthesis 8

(rising edge-triggered flip-flop clocked by ideal_clock1)

Endpoint: GCDdpath0/clk_gate_A_reg_reg/latch

(gating element for clock ideal_clock1)

Path Group: ideal_clock1

Path Type: max

Point Cap Trans Incr Path

--

clock ideal_clock1 (rise edge) 0.000 0.000

clock network delay (ideal) 0.150 0.150

GCDdpath0/A_reg_reg_1_/CLK (DFFARX2_RVT) 0.000 0.000 0.150 r

GCDdpath0/A_reg_reg_1_/Q (DFFARX2_RVT) 11.002 0.044 0.128 0.278 r

GCDdpath0/U94/A2 (NAND2X0_RVT) 0.044 0.000 * 0.278 r

GCDdpath0/U94/Y (NAND2X0_RVT) 0.698 0.028 0.023 0.301 f

GCDdpath0/U95/A4 (AO22X1_RVT) 0.028 0.000 * 0.301 f

GCDdpath0/U95/Y (AO22X1_RVT) 0.706 0.015 0.034 0.335 f

GCDdpath0/U98/A1 (NAND3X0_RVT) 0.015 0.000 * 0.335 f

GCDdpath0/U98/Y (NAND3X0_RVT) 0.640 0.025 0.018 0.354 r

GCDdpath0/U101/A1 (NAND3X0_RVT) 0.025 0.000 * 0.354 r

GCDdpath0/U101/Y (NAND3X0_RVT) 0.619 0.033 0.026 0.379 f

GCDdpath0/U107/A1 (NAND2X0_RVT) 0.033 0.000 * 0.379 f

GCDdpath0/U107/Y (NAND2X0_RVT) 0.603 0.024 0.028 0.407 r

GCDdpath0/U23/A1 (NAND4X0_RVT) 0.024 0.000 * 0.407 r

GCDdpath0/U23/Y (NAND4X0_RVT) 0.655 0.041 0.029 0.436 f

GCDdpath0/U127/A1 (AND2X1_RVT) 0.041 0.000 * 0.436 f

GCDdpath0/U127/Y (AND2X1_RVT) 3.173 0.028 0.048 0.484 f

GCDdpath0/A_lt_B (gcd_datapath_W16) 0.000 0.484 f

GCDctrl0/A_lt_B (gcd_control) 0.000 0.484 f

GCDctrl0/U12/A1 (AND2X1_RVT) 0.028 0.000 * 0.484 f

GCDctrl0/U12/Y (AND2X1_RVT) 1.875 0.021 0.038 0.522 f

GCDctrl0/B_mux_sel (gcd_control) 0.000 0.522 f

U5/A (NBUFFX2_RVT) 0.021 0.000 * 0.522 f

U5/Y (NBUFFX2_RVT) 5.287 0.023 0.036 0.557 f

GCDctrl0/IN0 (gcd_control) 0.000 0.557 f

GCDctrl0/U11/A3 (OR3X1_RVT) 0.023 0.000 * 0.557 f

GCDctrl0/U11/Y (OR3X1_RVT) 0.537 0.016 0.032 0.590 f

GCDctrl0/A_en (gcd_control) 0.000 0.590 f

GCDdpath0/A_en (gcd_datapath_W16) 0.000 0.590 f

GCDdpath0/clk_gate_A_reg_reg/EN (SNPS_CLOCK_GATE_HIGH_gcd_datapath_W16_1)

0.000 0.590 f

GCDdpath0/clk_gate_A_reg_reg/latch/EN (CGLPPRX2_RVT)

0.016 0.000 * 0.590 f

data arrival time 0.590

clock ideal_clock1 (rise edge) 0.700 0.700

clock network delay (ideal) 0.000 0.700

clock uncertainty -0.035 0.665

GCDdpath0/clk_gate_A_reg_reg/latch/CLK (CGLPPRX2_RVT) 0.000 0.665 r

clock gating setup time -0.058 0.607

data required time 0.607

--

data required time 0.607

data arrival time -0.590

--

EECS 151/251A ASIC Lab 3: Logic Synthesis 9

slack (MET) 0.017

These values are calculated by the .db files included by the source dc setup.tcl command. The
db file is a binary file that describes the delay through various gates depending on the input slope
and the output capacitance. The .db file is generated from a textual .lib file, which is created by
running transistor-level simulations of each standard cell in a process called “cell characterization.”

In a separate terminal, open the .lib file that generated the .db file.

vim /home/ff/eecs151/stdcells/synopsys-32nm/vendor/

lib/stdcell_rvt/db_nldm/saed32rvt_tt1p05v25c.lib

Search for NAND2X0 RVT (line 78311). We would like to understand where the following line in the
critical path comes from:

Point Cap Trans Incr Path

--

GCDdpath0/U94/A2 (NAND2X0_RVT) 0.044 0.000 * 0.278 r

GCDdpath0/U94/Y (NAND2X0_RVT) 0.698 0.028 0.023 0.301 f

Inside the lib file, we search for the correct cell (NAND2X0 RVT), the output pin (Y), the related
input pin (A2) and we find a 2d table where each row corresponds to different input net transitions
(index 1) and each column corresponds to different output net capacitances (index 2).

cell (NAND2X0_RVT)

...

pin (Y)

...

timing () {

related_pin : "A2";

cell_fall ("del_1_7_7") {

index_1("0.016, 0.032, 0.064, 0.128, 0.256, 0.512, 1.024"); //input_net_transition

index_2("0.1, 0.25, 0.5, 1, 2, 4, 8"); //total_output_net_capacitance

values("0.0141691, 0.0158192, 0.0183277, 0.0231493, 0.0328029, 0.0521611, 0.0906369", \

"0.0155022, 0.0175121, 0.0205658, 0.0262506, 0.0364229, 0.0557899, 0.0940605", \

"0.0149406, 0.0176121, 0.0217530, 0.0289079, 0.0414177, 0.0628228, 0.1014903", \

"0.0098307, 0.0133983, 0.0187084, 0.0284193, 0.0446767, 0.0712630, 0.1151648", \

"-0.0046647, -0.0004140, 0.0064594, 0.0189513, 0.0407080, 0.0753612, 0.1308888", \

"-0.0393372, -0.0338884, -0.0256511, -0.0098435, 0.0182941, 0.0633240, 0.1366469", \

"-0.1132701, -0.1072634, -0.0973538, -0.0792401, -0.0452052, 0.0144727, 0.1094809");

In this case, the closest entry in the table would be index 1 between 1 and 2 (actual transition
of 0.044 between 0.032 and 0.064) and index 2 of between 2 and 3 (actual capacitance of 0.698
between 0.5 and 1). This yields a delay value between 0.0205 and 0.0289, and the timing tool
reports 0.023 as expected.

The same information will be generated in an .sdf file for gate-level simulation with annotated
delays. Reading these reports is very important, so make sure you understand all of these columns

EECS 151/251A ASIC Lab 3: Logic Synthesis 10

before you move on. There is a way to visualize this information within the GUI. Go to Timing —
Timing Analysis Driver from the GUI menu items. This should pop up a window, simply click the
OK button. You should now see a table of information, as shown in the picture below:

Figure 2: Timing Analysis Driver window

This is a representation of the previous timing report. Highlight the timing path with the smallest
slack, and click on the Inspector button. Then click the Schematic button to load a new window
with a schematic. Click on the Data Path window. You should see something similar to below:

Figure 3: Inspector window showing Data Path tab

EECS 151/251A ASIC Lab 3: Logic Synthesis 11

Under the Delay Profile tab it shows you which gates contribute to the delay. Expand the
hierarchy and select the rows one at a time. Notice that when you click on a new row it highlights
a new point in the schematic window. You can walk through the entire critical path this way, and
see which gates are contributing what delay to that worst case path.

Figure 4: Delay profile tab with the output of the first register highlighted

Now let’s take a look at the power report:

report_power

Global Operating Voltage = 1.05

Power-specific unit information :

Voltage Units = 1V

Capacitance Units = 1.000000ff

Time Units = 1ns

Dynamic Power Units = 1uW (derived from V,C,T units)

Leakage Power Units = 1pW

Warning: Cannot report correlated power unless power prediction mode is set. (PWR-727)

Power Breakdown

Cell Driven Net Tot Dynamic Cell

Internal Switching Power (uW) Leakage

Cell Power (uW) Power (uW) (% Cell/Tot) Power (pW)

--

Netlist Power 288.5137 88.6894 3.772e+02 (76%) 7.710e+07

Estimated Clock Tree Power N/A N/A (N/A) N/A

--

EECS 151/251A ASIC Lab 3: Logic Synthesis 12

Internal Switching Leakage Total

Power Group Power Power Power Power (%) Attrs

--

io_pad 0.0000 0.0000 0.0000 0.0000 (0.00%)

memory 0.0000 0.0000 0.0000 0.0000 (0.00%)

black_box 0.0000 0.0000 0.0000 0.0000 (0.00%)

clock_network 22.7097 26.8379 1.8522e+06 51.3998 (11.31%)

register 189.3470 16.0004 3.5358e+07 240.7056 (52.98%)

sequential 0.0000 0.0000 0.0000 0.0000 (0.00%)

combinational 76.4570 45.8511 3.9891e+07 162.1994 (35.70%)

--

Total 288.5137 uW 88.6894 uW 7.7102e+07 pW 454.3048 uW

1

The internal power comes from crowbar current during a transition, the switching power involves
switching the output capacitance, and the cell leakage is the leakage of each cell. Without knowing
the switching activity of your design, the active power measurements will not be accurate, but the
leakage will still be pretty accurate.

DC can also summarize the types and sizes of cells used in the design.

Another helpful reporting command is the following:

report_reference

**

Report : reference

Design : gcd

Version: G-2012.06

Date : Fri Sep 12 15:06:49 2014

**

Attributes:

b - black box (unknown)

bo - allows boundary optimization

d - dont_touch

mo - map_only

h - hierarchical

n - noncombinational

r - removable

s - synthetic operator

u - contains unmapped logic

Reference Library Unit Area Count Total Area Attributes

INVX2_RVT saed32rvt_tt1p05v25c

1.524864 1 1.524864

NBUFFX2_RVT saed32rvt_tt1p05v25c

EECS 151/251A ASIC Lab 3: Logic Synthesis 13

2.033152 5 10.165761

gcd_control 50.320513 1 50.320513 h, n

gcd_datapath_W16 779.459651 1 779.459651 b, h, n

Total 4 references 841.470788

1

The Total Area is the total area of all of the combined cells that are referenced in the design. The
units of these are square micrometers, but keep in mind this is just the total area occupied by the
standard cells themselves. The place and route tool (which we will use in the next lab) is not going
to be able to pack everything together perfectly since a lot of the time you will be limited by these
other constraints. You can rerun this same command to expand into the submodules, by adding
the -hierarchy flag. This full command becomes:

report_reference -hierarchy

The output of this command is omitted from this lab writeup since it is very large, but please
run this command and briefly look through the cells that are referenced in the gcd control and
gcd datapath submodules.

There are a lot of other command options that will not be discussed in detail, but can often be
very important. If you do not know what they are, there are a few commands that can be very
handy for figuring out what to try. The following command will return the names of commands
this tool supports that contain the word reference in them:

info comm *reference*

For example, one of the commands returned from this is the all rp references command. While
we have not gone over the topics to cover the details of this command, more information about it
(and all other commands) can be found by typing:

man all_rp_references

If you are using the GUI you should see a documentation window pop up, which has a lot more
useful information. Become familiar with these windows, as they will be crucial for the project
later in the class.

Question 4: Exploring new commands

a) Find the net with the largest fanout. Report the net, the fanout, and the command(s) you used
to find it

b) Find the net with the largest capacitance. Is this the same as the net in the previous question?
Again report the net, the capacitance and the command(s) you used to find it

EECS 151/251A ASIC Lab 3: Logic Synthesis 14

To exit from the dc shell you can either type exit or press Control-c a few times.

Automated Synthesis

While interactive control of synthesis is instructive, it would be too time consuming for real design.
Instead, the Makefile and tcl scripts run all of the commands you just ran automatically.

cd lab3a_synthesis/dc-syn

make

This will run through all of the previous steps all in one shot, as well as setting up a suite of reports
and a few handy files for interactions with other tools. Go into the folder that you have created
with the Makefile with the following command:

cd current-dc/

In here you should see a copy of the files from the previous folder, but the important folders to
point out are the results and reports folders. The results folder contains the outputs of Design
Compiler that will be used in other tools, and the reports folder contains more detailed versions
of the reports that we were looking at previously in the lab. Look through the reports folder and
familiarize yourself with the different reports.

If you would now like to open the design to generate more reports or use the GUI, use the following
commands.

cd current-dc

dc_shell-xg-t -64bit -topographical_mode

source dc_setup.tcl

read_ddc results/gcd.mapped.ddc

Question 5: Reporting Questions

a) Which report would you look at to find the total number of each different standard cell that the
design contains?

b) Which report contains total cell counts contained within the design?

c) Which report contains information about how sub-blocks were actually implemented?

Post-Synthesis Simulation

From the root folder, type the following commands:

cd vcs-sim-gl-syn/

make run

EECS 151/251A ASIC Lab 3: Logic Synthesis 15

This will run a post-synthesis simulation, but does not use annotated delays from the sdf file. The
reason that we do this is because Design Compiler does not create a clock tree, so you can easily
have a design that contains hold time violations in it that will be fixed during place and route. The
example that we used in the previous lab had a fake clock tree added to it to demonstrate part of
this, but we will discuss post place and route simulations in future labs. For now, simply ensure
that the design still simulates properly (passes the testbench).

Changing the Design

Question 6: Design changes

Now that you understand how to use the tools, change the GCD implementation from 16 bits to 128
bits (this can be done in the gcd.v file). Push the new design through the tools, and determine its
critical path, cell area, and maximum operating frequency from the reports.

a) Did the design meet timing?

b) If not, rerun the tools with a new clock period that will work based on the extra time that you
need from the timing report. What is the clock period that you used and did that new choice
work?

c) What is the critical path in the design?

