
EECS 151/251A ASIC Lab 2: Simulation

Written by Nathan Narevsky (2014, 2017) and Brian Zimmer (2014)
Modified by John Wright (2015, 2016) and Arya Reais-Parsi (2019)

Overview

In lecture, you have learned how to use Verilog to describe hardware at the register-transfer-level
(RTL). In this lab, you will first learn how to simulate the hardware that you have described in
Verilog with a CAD tool called Synopsys VCS. The goal of this lab is to introduce the Verilog
simulation environment, as well as demonstrate how useful and critical simulation will be as we
move forward with the necessary CAD tools for VLSI design. While going through the lab, keep in
mind that understanding how the simulation environment works will lead to confidence in designs
after running through the CAD tools, and significantly less hassle in debugging problems when
they occur.

This lab uses tools that may not be installed on all servers, so we recommend that you login to one of
the class servers which are physically located in Cory 125, which are named c125m-1.eecs.berkeley.edu

through c125m-16.eecs.berkeley.edu. You can access them remotely through SSH (see the
last section of the Lab 1 handout). You may also try the hpse-10.eecs.berkeley.edu through
hpse-15.eecs.berkeley.edu if you are having trouble with the c125m machines.

Take this opportunity to download the VCS user guide from the eecs151 class-account home
directory: /home/ff/eecs151/labs/manuals/vcsmx_ug.pdf.

To begin this lab, get the project files by typing the following command

git clone /home/ff/eecs151/labs/lab2

cd lab2

RTL-level simulation: FIR filter

For this lab, we will be using Verilog code that implements a very simple FIR (Finite Impulse
Response) filter. A schematic of the filter is shown below.

/home/ff/eecs151/labs/manuals/vcsmx_ug.pdf

EECS 151/251A ASIC Lab 2: Simulation 2

D Q D Q D QD Q D Q D Q

*1

Input

Output

*1 *4 *16 *4

Figure 1: FIR Filter

There is an input signal and a clock input, and 5 delayed versions on the input are kept, multiplied
by different coefficients and then summed together. The math expression for this particular filter
is:

y[n] = 1 ∗ x[n] + 4 ∗ x[n− 1] + 16 ∗ x[n− 2] + 4 ∗ x[n− 3] + 1 ∗ x[n− 4]

The input in our example is a 4 bit signed 2’s compliment number, and the output is a larger
bitwidth signed number to ensure that there is no overflow. The purpose of this class and this lab
in particular is not to focus on filter design, but on implementation of digital circuits from Verilog
code. As such, Verilog code for this FIR filter is provided in the src folder.

For simulating Verilog, we will be using a tool from Synopsys called VCS. VCS works by compiling
Verilog modules into a binary file, and then executes that binary file to produce the desired outputs.
This simulation framework is very fast and can be easily scripted, as you will see throughout this
lab. VCS is a command line based tool, so for your convenience we have provided a Makefile that
will run VCS with different options, which will be explained throughout the lab.

To get started let us look through a part of the Makefile included in the project files folder. Below
are some selective lines copied and pasted to highlight the basic functionality of this Makefile.

include ./Makefrag

default : all

basedir = ./

EECS 151/251A ASIC Lab 2: Simulation 3

Verilog sources

srcdir = $(basedir)/src

vsrcs = \

$(srcdir)/fir.v \

$(srcdir)/addertree.v \

$(srcdir)/fir_tb.v \

#--

Build rules

#--

VCS = vcs -full64

VCS_OPTS = -notice -PP -line +lint=all,noVCDE +v2k -timescale=1ns/10ps -debug

#--

Build the simulator

#--

vcs_sim = simv

$(vcs_sim) : Makefile $(vsrcs)

$(VCS) $(VCS_OPTS) +incdir+$(srcdir) -o $(vcs_sim) \

+define+CLOCK_PERIOD=$(vcs_clock_period) \

-sverilog $(vsrcs)

#--

Run

#--

vpd = vcdplus.vpd

$(vpd): $(vcs_sim)

./simv +verbose=1

date > timestamp

run: $(vpd)

#--

Default make target

#--

.PHONY: run

all : $(vcs_sim)

EECS 151/251A ASIC Lab 2: Simulation 4

There is a lot of code here, but let us walk through the different pieces to show what each of them
does. The first few lines setup the files that will be necessary for running the tool, and make sure
that the libraries are defined properly. The Makefrag file that gets included sets up a few of the
variables that get used in the makefile, such as the $(vcs_clock_period) variable. Under the
comment that says “Build rules” two things are defined, VCS and VCS OPTS. VCS is the command to
call the vcs simulator, and VCS OPTS defines some of the options thare passed to the simulator. One
important setting here is the -timescale option, which sets the timescale for the Verilog testbench.
We will discuss what this actually means later on in the lab. Under the comment that says “Run”
the makefile sets up the process of running the executable output of VCS to generate a “.vpd”
file. This file contains simulation history data, and is generated in the Verilog testbench with the
$vcdpluson and $vcdplusoff system tasks. A system task in Verilog is a function that is created
by the compiler to make things easier for you, and usually begins with a $ character. We will not
dig deeper into system tasks in this lab, but they are very powerful tools that are worth investing
the time in learning.

Below the “Default make target” comment, the final lines set up run as a phony make target, which
means that it is simply a shortcut for running a variable target, and will not have it’s own file that
it creates. The “all” target was setup as the default target towards the beginning of the file, and
here it points to the $(vcs_sim) target.

To actually run the makefile, we first need to setup the path for the tools. To do this run the
following command:

source /home/ff/eecs151/tutorials/eecs151.bashrc

This sets up the correct environment variables to be able to run VCS and the other CAD tools
that we will use in later labs. Run the Makefile to create an output as well as the .vpd waveform
file with the following command:

make run

The first line you should see is the command that the Makefile created for you. Next, VCS compiles
your Verilog code. If your code has errors, they will be shown during this step. There are also
“Lint” errors, that attempt to catch Verilog mistakes that aren’t actual syntax errors, but cause
common bugs. We intentionally left code in the design to trigger these messages. In this case,
assigning a number like “1” instead of 16’d1 gives Verilog less information about how you want
the bits interpreted, which could cause a design bug that is hard to track down. At some point,
you will see ./simv which means that compilation has finished, and the simulator has started.

At the end of the output text, the testbench should report the observed values with the expected
values. You can even automate the checking of these outputs in either the Verilog testbench itself
or through parsing the output text directly, but that will be explained in more detail later. Let us
load up the waveforms in a graphical viewer DVE (Discovery Visualization Environment). (Note:
this will require X11 forwarding, so if you ssh from a terminal be sure to use either the -X or -Y
flag. If you are using Putty, make sure to enable X11 forwarding and have the proper X server
software installed. An example of an X server is a program called Xming, although there are a ton
of other options). You can also use X2Go, NoMachine, or VNC.

EECS 151/251A ASIC Lab 2: Simulation 5

dve -vpd vcdplus.vpd &

When DVE pops up, you should see the window below:

Figure 2: DVE Window

This window will contain the design hierarchy, the signals in that level, as well as a lot of other
buttons and options. One important feature is towards the top left of the window where it has
a textfield and next to that says “x10ps”. This represents the units of time that the signals are
plotted on. Change this to be in units of nanoseconds.

You can add waveforms to a new view by selecting a few of them (In, Out and clk) and the right
clicking and going to “Add To Waves” and then clicking either “New Wave View” or “Recent”.
Since there are no other wave views open these both accomplish the same thing. If you already had
a wave view open, then you can selectively add signals to one wave view or another. A screenshot
of adding these waveforms is shown below.

EECS 151/251A ASIC Lab 2: Simulation 6

Figure 3: Adding waveforms

The picture below displays the output of the FIR filter as a step waveform. This can be achieved by
setting the radix of the signal to be 2’s compliment (right-click — Set Radix — Twos compliment)
and then changing the Set Draw Style Scheme to be Vector: Analog. You then need to change the
properties of the signal since the beginning of the waveform does not utilize the full scale. If you
right click and go to properties, you can set the Analog Waveform properties to be User, and set
the Min to be -32 and the max to be 32. Then you should see something similar to the waveform
below.

Figure 4: Displaying Waveforms

EECS 151/251A ASIC Lab 2: Simulation 7

For those of you who know a bit about FIR filters, this beginning section of the waveform is the
filter’s impulse response.

Testbenches

Testbenches are how you simulate a design. Specifically they setup the inputs and check the
outputs of the submodule that you are trying to test. If you look at the fir tb.v file in the src/

folder, there are a few important parts that you will need to understand in order to write your own
testbench. The first important piece is generating the clock waveform. This is accomplished by the
following lines of Verilog code:

reg clk;

initial clk = 0;

always #(`CLOCK_PERIOD/2) clk <= ~clk;

This creates a register named clk, which is initially 0 and toggles every CLOCK PERIOD divided
by 2 (in order to generate a rising edge every CLOCK PERIOD). This clock period is defined
through the Makefile process that we will discuss in more detail in the next section in the lab.
After we have a clock waveform, the next step is to setup the inputs. There is an initial begin block
that is the body of the testbench that does this work. Let us look at a piece of it:

initial begin

$vcdpluson;

In <= 4'd0;
@(negedge clk) In<= 4'd1;
@(negedge clk) In<= 4'd0;
.

.

.

@(negedge clk) In<= 4'd13;
@(negedge clk) In<= 4'd14;
@(negedge clk) In<= 4'd15;
$vcdplusoff;

$finish;

end

The $vcdpluson and $vcdplusoff are system tasks that setup the vpd file generation that we
used to look at the waveforms in the previous section. The other lines setup the register In to
take on different values after the negative edge of the clock. In this block, the lines are executed
after each other, so the next @(negedge clk) call waits until the next negative edge of the clock
before executing the code that follows it. This allows us to set up a series of values for the inputs
sequentially in time. The reason that we are operating on the negative edge of the clock is that the
registers that are sampling the inputs operate on the positive edge, so we want to make sure that

EECS 151/251A ASIC Lab 2: Simulation 8

the correct value is sampled when that edge occurs. If we were to change the inputs on the same
edge, we could cause a hold time violation later when delay gets annotated.

The above code sets up the values sequentially, but you can do this in a much cleaner way by
reading values from a file. Take a look at the file src/fir tb file.v, parts of which are copied
below:

initial begin

$vcdpluson;

repeat (26) @(negedge clk);

$vcdplusoff;

$finish;

end

initial begin

$readmemb("data_b.txt", Out_correct_array);

$readmemb("input.txt", input_array);

end

assign Out_correct = Out_correct_array[index_counter];

assign In = input_array[index_counter];

always @(negedge clk) begin

$display($time, ": Out should be %d, got %d", Out_correct, Out);

index_counter <= index_counter + 1;

end

This testbench file uses text files to pull both the inputs and expected outputs, as well as displays
what the output is and what it thinks the correct output should be. This is done using the
$readmemb command, which reads a file into a verilog memory that you instantiate in the testbench.
By then using a counter to loop through both the input and the desired output, the testbench simply
needs to run for the right number of cycles, which is shown using the repeat syntax inside the
first initial begin block. Finally, this testbench uses $display, which is verilog’s print statement
to print out information about the waveforms to the console so that you do not need to look at
the waveforms. More sophisticated testbenches can be created this way so that you do not have to
look at the waveforms to gather the necessary information, allowing you to automate your testing
procedures. While this is a small enough design that you could in theory debug using only the
waveforms, the project later in this course will be much more complicated so learning how to build
automated testbenches will be very important.

EECS 151/251A ASIC Lab 2: Simulation 9

Question 1: Conceptually translating between waveforms, Verilog, and schematics

When asked to write Verilog, include the module definition. There are multiple correct solutions, we
will accept any solution that works.

a) Using the provided Verilog code and input waveforms, submit the equivalent schematic and draw/
sketch the output waveforms. Note that the initial conditions of X and Z are given.

module dut (

input A, B, clk,

output reg X, Z

);

always @(posedge clk) begin

X <= B;

Z <= (Z & X) | A;

end

endmodule

clk

A

B

X

Z

b) Using the schematic below and input waveforms, submit the equivalent Verilog code and a sketch
of output waveforms

Y
B[1]

A[0]
B[0]

A[1] A[1]

A[0]

B[1]

B[0]

Y

c) Using the input and output waveforms provided below, submit the equivalent schematic and
Verilog code. Hint: Use 1 flip-flop and 1 logic gate only. A is an input, X and Y are outputs.

clk

A

X

Y

Question 2: Writing a testbench

a) Using the Verilog code in Question 1a, generate a testbench that emulates the input waveforms,
then simulate the block using VCS and compare to your previous answer. Submit your Verilog
testbench and a screenshot of the simulation waveforms showing all of the input and output pins.

EECS 151/251A ASIC Lab 2: Simulation 10

Gate-level simulation: Incorporating delay estimates into the FIR
filter

The RTL design of the FIR filter, fir.v, conceptually describes hardware, but cannot be imple-
mented. During synthesis, a CAD tool translates RTL into logic gates from a particular technology
library. In Lab 3a, you will learn how to create this file yourself, but for now we have provided the
output result as src/fir.mapped.v.

To simulate using the gate level netlist, you simply need to make a few changes to the VCS setup.
If you look at the Makefile, these changes have been done for you already, but it is important to
understand these differences. The first difference in the Makefile is the difference between vsrcs

and vsrcs gates. These variables setup which Verilog files to include for the simulation, and for
vsrcs gates we also include a cells.v file which contains Verilog models of the standard cells.
You will learn more about these standard cells in the next lab, but just know that you need to
include that file to run the simulation otherwise the simulator will error since it cannot find the
definitions for those modules. The extra options in the new VCS section of the Makefile are simply
to deal with these standard cell models. One important new setup is in the vpd generation, where
it says -ucli -do run.tcl. A UCLI (Unified Command-Line Interface) file allows a designer to
issue commands directly to the simulator for various purposes. What we are using these files for
in this lab is to set initial conditions for the registers in the design, since although we do not know
their initial state, verilog simulators do not properly simulate with unknown or ’x’ valued inputs.
To truly test whether a real design will work or not you should be able to start with any set of initial
conditions and the design will still work, which we will not do in this lab due to time constraints.
This previous command also calls a run.tcl script, which actually sources the UCLI file, and runs
the simulation. Note: this can only be done with the -P access.tab flag setup in the vcs section.

Go ahead and run the gate level simulation by entering the following command:

make run-gates

Notice that the waveforms look exactly the same as the results from simulating the RTL version
of the design. By default, the logic gates behave ideally. Depending the operating conditions of
the chip—voltage, process variation, temperature—the delay through a gate will be known. CAD
tools do this calculation for you, and annotate the delay onto the gates using an SDF file.

Open src/fir.mapped.sdf, and go to line 1535.

(CELL

(CELLTYPE "INVX1_RVT")

(INSTANCE add0/U47)

(DELAY

(ABSOLUTE

(IOPATH A Y (0.013:0.013:0.013) (0.011:0.011:0.011))

)

)

)

EECS 151/251A ASIC Lab 2: Simulation 11

The above text describes the delay for a cell of type INVX1 RVT for the instance add0/U47. The
format of the delay is minimum:typical:maximum, which refer to different operating regions that
will be discussed in more detail in future labs. We will be simulating only using the typical numbers
(which are in the middle) for this lab. For this specific instance that means that there will be a
delay of either 0.013ns or 0.011ns, depending on whether the data is transitioning from low to high
or from high to low.

Remember that previously we had talked about the VCS OPTS, and how there was a -timescale

flag. This was specified to have the value 1ns/10ps, which means that a delay of 1 would correspond
to an actual delay of 1ns, with a resolution of 10ps.

To tell the simulator about these delays, navigate to the $(vcs_sim_gates) target in the Makefile
and add the following options to the $(VCS) command:

+sdfverbose -sdf typ:fir:src/fir.mapped.sdf

In doing so be sure to remove the following flags as well:

+notimingcheck +delay_mode_zero

Simulate the design again, and open the resulting waveform. Zooming in on the same point in time
that we looked at earlier (12.5ns in), from the DVE window figure out the delay of the first flip-flop
in the chain (delay chain0) is relative to its own clock edge (the clk-to-Q) as well as the clk input
pin. Try out some of the other options in the wave viewer to try and figure out what is going on.
If you get stuck on anything that you are trying to do, you can look up the Synopsys DVE User
Guide, which has a significant amount of information about DVE, in the eecs151 home directory:
/home/ff/eecs151/labs/manuals/dve_ug.pdf.

Question 3: Calculating delays from the DVE window

Calculate the delay of the first flip-flop in the chain (delay chain0) relative to the input pin clk at
12.5ns. What is the delay, and how were you able to get it from the viewer?

Now that we are simulating with delay, we can run the circuit too quickly. When this happens,
there is a ’setup’ violation and the design will not function correctly

Question 4: Creating and fixing setup times

Edit the Makefrag file to make the clock period 0.5ns and simulate again. Does it still work? Why
or why not? Run it again at a larger clock period (but less than the initial 5.0ns) and report both
the clock period you used and whether or not it successfully meets timing.

Re-run the design with the clock period set to 5.0ns again. Saved the vpd file as a different name,
such as “vcdplus gates.vpd” After you have renamed the previous vpd file, run:

make run-gates-hold

/home/ff/eecs151/labs/manuals/dve_ug.pdf

EECS 151/251A ASIC Lab 2: Simulation 12

This will run the simulation with a different delay file, which intentionally has an error in it. You
should now have two different vpd files, and you can load them in the DVE waveform viewer to
see the differences. Add the delay chain signals as well as the clk0-clk5 signals for both vpd files.
Zoom into the clock edges near 7.53ns into the simulation. There should be a significant difference
between the two vpd files, and one of them will have a signal that is incorrectly getting captured on
the wrong cycle. This is an exaggerated case of a hold time violation, which occurs when a specific
delay path is too small relative to another.

Question 5: Fixing hold times

Setup times can be fixed by increasing the clock period, but hold times must be fixed at design time.
Later, you will learn how the CAD tools do this for you, but in this problem you will manually fix
the design.

a) Explain the differences between the waveforms in the two vpd files. What signal(s) are different
and why?

b) Modify the src/fir.mapped.hold.sdf file to fix the hold time. You are only allowed to increase
the delays in one cell. Submit the line you changed (line number and new text), as well as
simulation waveforms showing correct output and the text printout of the simulation showing
that the results are correct.

